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PREFACE

Propelled by the increased research activity in the area of large space structures, the
Structures and Materials Committee of the Aerospace Division of the American Society of
Civil Engineers foresaw the need for the establishment of a Task Committee on Methods
for Identification of Large Structures in Space. With the support of several prominent
experts in the field of identification, Manohar Kamat proposed the formation of such a
task committee, which was finally approved by the Executive Committee of the Aerospace
Division and by the Management Group C around mid-1983. The charter of the task
committee was to develop a state-of-the-art report on methods for identification of large
structures in space. Judging by the history of previous such task committees, it was
immediately apparent that regardless of the overwhelming initial enthusiasm of all its
members, this task committee was unlikely to finish the work they had started unless
financial support could be secured. Accordingly, the task committee set out to find an
agency that would sponsor its activity. After a great deal of effort, the committee was
successful in winning the support of the Air Force Rocket Propuision Laboratory (AFRPL)
at Edwards Air Force Base, California to support the activity of the committee. The
support provided by AFRPL was to be used to provide writing stipends for members,

travel expenses for committee meetings and other expenses to produce the report.

) Th'e writing group of the ;:ommittee consisted of some of the most highly dedicated
individuals any task committ;e'e can aspire to have as members. The writing group con-
sisted of Eugene Denman of the Department of Electrical Engineering of the University of
Houdston (Sections 7, 8, parts of'4 and 9 and the Bibliography), Timothy Hasselman, Pres-
ident of Engineering Mechanics Associates Inc. of Torrance, California (Parts of Sections
1, 3, 4 val,nd 9), C. T. Sun of the School of Aerospace Engineering of Purdue University
(Part of Sectien 3), Jer-Nan Juang of the Structural Dynamics Branch of NASA Lang-

ley Research Center (Seétion 5, Parts of 9), John Junkins of the Aerospace Engineering
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Department of Texas A & M University (Section 6, Parts of 1), Firdaus Udwadia of the

LY Moy

f Civil Engineering Department of University of Southern California (Section 2, Parts of
4), Vipperla Venkayya of the Flight Dynamics Laboratory of Wright-Patterson Air Force f‘;\
: Base and Manchar Kamat of the School of Engineering Science and Mechanics ol Georgia E:
' Institute of Technology (Parts of Section 1, Parts of 9). Jer-Nan Juang, Manohar Ka- ;:‘::
mat and Vipperla Venkayya provided editorial support. In his characteristic indomitable E,:
spirit, Eugene Denman took upon himself the finalization of the manuscript using TgX. '._:_j
John Junkins enlisted the assistance of his excellent graduate student, N. Glenn Creamer, é‘
for the writing effort of Section 6 and help in the overall editing of this report. '5_:.
:

-
P4

Two individuals on the Task Committee deserve special mention for their contribu-

tions beyond the call of duty. Timnothy Hasselman took special pains to review the entire

manuscript and made extremely valuable suggestions for improvement of the final format.

BTN S AL S AT 8.0 P D &

Last, but not least, Jer-Nan Juang undertook an extensive writing effort and served as one

of the editors.

The report provides an excellent overview of the subject of identification, with partic-

A TR ST

L

ular emphasis on structures, perhaps lacking in sufficient detail in some portions. There

may be some redundancy in the rnaterial in the report, but this is to be expected due to

CAPS A S OO L

- s
:} the fact that the report was written by a committee. Time did not allow for the editing \\
N “7
s} task to remove all of the redundancies. There may also be some minor points on which o

Lf
113

different views are expressed by the members, although there was no major disagreement
within the committee on the overall scope of the task that remains for the technical com-
munity in resolving the issue of identification of large space structures. It is hoped that

this report will serve as a valuable starting point for professionals as well as students of

LN Wl L LT

structural identification.
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SECTION 1. INTRODUCTION.

Many proposed space missions envisioned for the coming decades involve vehicles and
structures which certainly qualify as large space structures. A large space structure will
be defined as a structure in space which consist of a large number of structural
elements configured in such a way to provide a space platform for ongoing
scientific experiments or defense missions. The structure will be constructed
of thousands of structural elements and may be highly flexible. Structures with
special mission requirements, such as pointing accuracies, orientation control,
shape control and target tracking may be classified as large space structures if
the structure has a large number of controlled structural modes with stringent
tolerance requirements. Typical design configurations are football field size or larger
structures envisioned for communication antennas, astronomical observatories, solar power
stations, space defense platforms and manned laboratories such as the space station. In
many cases, it is anticipated that these structures will require active control to carry out
ongoing maneuvers, suppress vibration, achieve fine pointing, and possibly, maintain a
precise shape. A fundamental obstacle to routinely achieving some of the most chzllenging
objectives is the anticipated inability to analytically model, with sufficient precision and

cenfidence, the structural dynamics of these highly flexible structures.

The inability to model the dynamics of large orbiting structures sterns from several
causes:

a. Due to the launch costs (which are a function of mass), there is an obvious incentive
to make these large structures light; This immediately leads to structures incapable
of supporting their own weight in a 1 g environment and it follows that ground based
testing of fully deploy--d/erected structures is near-impossible. Researchers will likely
have difficulty making accurate predictions of the equilibrium shape and in some cases

it will be necessary to measure and correct the equilibrium shape on-orbit.

f’l
™~

I o
o
P e

XX<2

Or X ul
>

. (.;:‘

| BN 4
A LONN

TR

JI-_‘

CR PR
T R LS

’
.
,
r
;
¢
’

™

o, Lot

» -
s k’-'.{‘.‘ 4

x

-'.-a'..l'

Tttt
e e .

sNE

p:




e e - - - = .

é
;
5

b. The anticipated use of composite materials to improve strength/weight ratios and
to provide passive damping will have a negative spinoff due to increased odeling
uncertainty including uncertain time variations in material properties as a consequence
of ageing (due both to cycling and exposure to the space environment).

c. Further complications arise due to the combination of very high flexibility and large
thermal gradients. For example, the extreme gradients encountered during the recent
Solar Array Flight Experiment (SAFE, deployed from the Space Shuttle), resulted in
an unanticipated, nonlinear deformation of the entire structure. It is interesting to
note that this ten story solar array represents the first large space structure actually
deployed in and retrieved from orbit.

d. Finally, parameter variations due to vehicle reconfiguration, docking with other ve-
hicles/structures, and consumption of fuel, etc., cause difficulties in characterizing

precisely the dynamics of such systems.

There exists a substantial body of literature on control of large space structures which
suggests that the number of modes that must be considered will be significantly greater
than > 10 for model verification and closed loop control design studies. Experience sug-
gests that blindly assuming the validity of a structural model (derived, for example, from
the intended vehicle structural design, using NASTRAN or a similar finite element code)
is dangerous indeed. This is especially so for first-of-a- kind, extremely flexible structures,
which make use of relatively new materials, joint mechanisms, and erection/deployment
techniques. Even for simpler structures, one can seldom manufacture the structure with
suflicient precision such that even ten natural frequencies and (especially) mode shapes
can be confidently predicted. For the class of large structures under discussion, especially
those made of composite materials and nusing difficult-to-model joints, the a priori models
will have to be validated and verified prior to flight. In addition, it is anticipated that

on-orbit adjustments will be required.
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One approach to control of large flexible space structures is to attempt adapting the

control law in near real time to better control the actua! structure (based upon real-time

estimation of the closed loop response in comparison to a reference model). While there
is little doubt that adaptive controls are useful in controlling poorly known systems, an
evaluation of the state-of-the-art in adaptive control indicates that the dimensionality
of most large space structure dynamical models is too high to rely solely upon adaptive
control techniques to achieve stable, high precision control...unless done in conjunction with
system identification techniques such as those discussed herein. On the other hand, existing

identification methods will require careful evaluation, modifications and extensions.

1.1. Motivation.

Structural identification research has historically been driven primarily by demands
for aerospace structural identification, trouble-shooting vibrating industrial machinery, and
suppression of vibration of civil structures due to seismic input. Only during the past five
years has identification of flexible space structures emerged as a serious problem. A large
majority of the presently available vibration test equipment and measured data analysis
methods impiicitly rely upon tests in a ground vibration laboratory, or ground-based in situ
tests. For example, the family of structural identification methods based upon harmonic
excitation must be viewed with caution since it may be difficult to create precise harmonic
excitation on orbit. Furthermore, the combination of many very low frequency modes and
the absence of environmental damping means that the time required to achieve steady
state (even if one can generate the required harmonic excitation) may defeat some of the
steady-state response methods. Thus the majority of standard ground vibration testing
and identification methods will require special modifications of actuators, sensors, and

data analysis methodology.
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The present study was motivated by the committee’s early assessment that existing
methodology is not adequate to solve many of the identification problems implicit in the
next generation of orbital missions. Thus, this report is intended to evaluate the existing
methods and the direction of recent research in the light of the difficuliies mentioned
above. The underlying objective is to make the engineering community aware of avaiiable
methods, and motivate research to extend these methods to better address the special

circurnstances of large flexible space structures,

1.2. Direction and Scope of the Report.

The concept underlying “system identification™ may generally be urfamiliar to civil
structural engineers. Parametric system identification involves the determination of certain
parameters associated with the system that characterize, either in the physical or modal
coordinates, its mass, stifiness and damping properties derived from its output response
to a carefully designed input. Nonparametric identification, on the other hand, seeks
to identify a broad and sometimes empirical input-output map for the structure. The
identification problem is thus the inverse of the analysis problem for dynamical systems
with which the structural engineers are quite familiar. However, whereas the analysis

problems are most often linear, the identification problems are intrinsically nonlinear.

Systern identification is being increasingly used by engineers in characterizing struc-
tures in earthquake environments, underwater objects, and more recently large flexible
space stnictures. A great deal of methodology for system identification, however, has been
developed by control engineers who use a terminology far different from the one used by
structural dynamicists, and hence a significant “communication gap” exists between the
two groups. The Glossary gives a list of some of the most commonly used terms and their

usage by the two groups in conveying the same meaning.
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The applications of system identification are numerous and so are the methods. No
single method is good for every identification problem. The choice of the method is deter-
mined by several factors such as the size and shape of the full-scale object or its model, the
type of the input excitation, the frequency and quality of the output signals, just to name
a few. Because of the breadth and depth of the subject matter of system identification
it is deemed necessary in this report to focus on those methods that are more appro-
priate for the identification of large space structures and, in the same spirit, attempt to
elaborate on the state-of-the- practice rather than the state-of-the-art in these methods.
This report thus represents an assessment of these metnods and, even though the style
is applications-oriented, in view of the scope and current evolution of methodology the
discussion is necessarily constrained to selectively treat details and to rely heavily upon
references to the published literature for standard material. In this regard an extensive
body of references has been included and an attempt has been made to collect the most
important papers and books available which bear on this subject. The literature review
emphasizes the “modern” literature (e.g. the past twenty years, with special emphasis on
the past five or ten years), and primarily the literature available in English. Selective use
is made of simple examples to illustrate various points regarding the essential features,
strengths and weaknesses of a few approaches. The task of a thorough evaluation of all the
methods with a view to determining their merits and demerits is not possible at this tine.
The practical experience base necessary to perform such an evaluation is not yet available.
Such an evaluation study on the class of structures of interest in this report would require
a great deal of thought in evolving an appropriate basis for comparison and an even bigger

effort to implement the actual evaluation process followed by a final assessment.

While this report represents the committee’s joint effort, it is no doubt incomplete (in
view of the large volume of ongoing research, and in view of the finite spheres of compe-

tence). However, the merit of this report will likely be measured by the extent to which
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it helps researchers focus upon the rather diffuse literature and develop the methodol-
ogy needed for the challenging missions before the structural dynamics, identification and

contrel community.

Section 2 provides the necessary theoretical background on the choice of the mod-
els for large space structures, the different identification methods and related numerical

procedures

Section 3 discusses issues involved in structural modeling which is a key part of the
structural identification process for large space structures. Among the issues discussed
are reduced-order plant models for control systems, minimizing the number of parameters
to be estimated and maximizing the correspondence between parameters and physical
measurements, substructuring to facilitate verification of large models by partitioning, the
treatment of nonlinearities, the quantification of nonlinearities and finally experimental

considerations as they impact system identification.

Section 4 deals with nonparametric models that perform identification using input-
output relations and touches upon techniques used for linear and nonlinear systems in the

time and frequency domains.

Sections 5 and 6 deal with parametric models. Section 5 provides a rather extensive
discourse on the identification of modal characteristics of flexible structures in the time
and frequency domains. Section 6 discusses methods for identification of structural modal
parameters and uses several simple examples to bring out the strengths and weaknesses of

the methods.

Section 7 deals with some of the problems associated with parameter estimation or

system identification of on-orbit space structures. Distinction between continuous and
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discrete time algorithms, optimum input test signals, optimum sensor and actuator loca-
tions, optimum sampling rates and uncertainty in system modeling and system inputs are

emphasized.

Section 8 addresses hardware requirements of identification and the division of the
hardware-software direcled aspects for realizing the goal of structural identification and

control.

Section 9 concludes the report by making recommendations, identi{ying current issues
and needs and also future areas of research that must be pursued in order to make the

goal of identification and control of highly flexible space structures realizable.

1.3, The Identification Process.

1.3.1. General Description.

System identification is the process of using the observed input to a system and its
observed response (or output) to derive an analytical model of the systemn which can be
used to predict its response to future inputs. System identification is referred to as the
inverse problem in system analysis. Instead of using a model of the system to predict how
the system will respond to given inputs, the response of the system to known inputs is
observed, and used to deduce a model of the system. In practice, system identification is
statistical estimation, although not always recognized as such. System properties derived
frorn samples of noisy data vary depending on the particular data sample used. The pre-
dictive accuracy of the analytical model is of ultimate concern. The identification process
is critical in achieving predictive accuracy, and more importantly, being able to quantify
predictive accuracy before the model is placed in service. Figure 1. illustrates the iden-

tification process. Part (a) of figure shows the basic schematic diagram, where input and

output measurements from an unknown system are processed in an identification operation
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to yield information about the nature of the system. Part (b) shows a corresponding logi-

cal flow diagram beginning with the physical system, on which experiments are performed

to produce input-output measurements, which in turn are used to identify a model of the

system.
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Figure 1. Simplified Illustration of the Identification Process.
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Both of these illustrations oversimplify the identification process to the point of ob-

T

s
scuring concepts and relationships which are essential for practical implementation. Figure ) :':’:
2 is more revealing. This logical flow diagram is drawn in three-dimensional perspective to ;:

N
allow the interrelationships between logical elements to be shown more clearly. Each ele- ‘E
ment is connected to each of the other elements by two-headed arrows indicating a two-way E.,
flow of information. In this illustration, the entire diagram represents the identification 22
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process, with estimation algorithms shown separateiy as tools to be used in accordance
with model verification procedures. In fact, the physical system (or test article) along
with the experiments and model may also be considered as tools to be used in accordance
with model verification procedures. These prccedures are designed to achieve modeling

objectives, just as the physical system is designed to achieve mission objectives.

Mission
objective
Phystcal
system

Physical
experiments

Analytical
model

Estimation
algomhms

Model
verification
Model
objective

Figure 2. Logical Flow Diagram Illustrating Identification.

Process for Large Space Structures.

The identification process is better understood by considering each of the paths be-

tween major elements of the process. For purposes of discussion, the paths have been

numbered in Figure 2. Path 1 represents the flow of information between the analytical

-
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modeling effort and model verification procedures embodied in a model verification pla~.

Clearly, the plan must be tailored to the specific nature of the model.

The basic structural model is likely to be a finite element model cousisting of thousands
of finite elements and perhaps tens of thousands of degrees of freedom. The structural
model used for control purposes must be greatly reduced. The type of reduction will
determine the parameters which must be estimated. This is an input to the formulation

of model verification procedures. On vhe other hand, limitations associated with model

B verification procedures may limit the type of parameters which can be estimated. A model

is only verifiable to the extent that its parameters can be estimated from experimental

o«
::‘: data. When a model is not verifiable, an alternative model must be sought. This is an
:'..r.}‘ input to the modeling effort.
E‘:’ Path 2 represents the flow of information between the physical system and the model
v
:‘;_ verification plan. It is the physical system which must be conirolled, and for which struc-
ﬁ tural integrity must be maintained. The location of critical components such as antennae,
l-\.; mirrors, thrusters, etc. will determine those parts of the structure which must be directly
:_'3 controlled. Points of force application such as thrusters, reaction wheels, docking ports,
3 etc., in conjunction with the structural configuration will determine locations of critical
) stress. These areas will be of particular concern for model verification and constitute
:‘ important inputs to the verification plan. On the other hand, limitations associated with
. mode! verification are likely to influence structural design. For example, it will be desirable
to design joints in such a way that nonlinearities are avoided, insofar as possible, so that -
j maximum use can be made of linear modeling and analysis techniques.
Path 3 represents the low of information between the selection of physical experiments
“3 and the model verification plan. Data requirements are dictated by the model parameters
>
" and input-output relationships to be estimated. These data requiremenis affect the design
”
3
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of experiments incorporated in the test plan. Limitations on testing will obviously affect
model verification procedures. For example, structures which are too large and (or) too
weak to be tested in a ground vibration test laboratory might have Lo be tested piecewise
{(substructuring) and (or) simulated by scale models tor purposes of testing. Such factors

have a major effect on model verification procedures.

Path 4 represents the interrelationship between model verification procedures and the
selection of estimation algorithms. A most important consideration in the selection of
estimation algorithms is the ability to evaluate in some sense the quality of the estimates.
From a statistical point of view, it is desirable to quantify the statistical significance of
the estimates. One will want to choose from alternative estimators those which yield the
highest degree of significance, or greatest confidence; intuitively, they will afford the high-
est degree of predictability. The choice of estimators will in turn affect model verification
procedures. For example, data requirements will be different for recursive and non- recur-
sive estimators. In general, test procedures as well as model verification procedures must

be commensurate with the data requirements of the estimators.

Path 5 may be thought of in terms of compatibility between the analytical model and
experimental procedures. For example, it is often desirable to define the coordinates of
a reduced analytical model so that they directly correspond to measurement coordinates.
The corresponding analytical mass matrix can then be used to normalize both analyti-
cal and experimental modes, and cross-orthogonality computations are straightforward.
Such direct correspondence will no doubt be unachievable for on-orbit identification, be-
cause of limitations on the number of measurement channels and data processing capacity.

Nevertheless, the degree of correspondence must be optimized.

Path 6 relating the analytical model to the physical system involves some of the same

considerations as Path 2 between the physical system and model verification procedures.
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! However, because analytical modeling methods are much further developed than methods %
3 for the verification of those models, Path 6 will be less restrictive in terms of the limita- E:E:
o AN
tions the analytical model and physical system place on each other. Nevertheless, certain Fﬁ

modeling objectives (such as substructuring) will iinply corresponding design objectives ?‘;%

(such as simple intertaces between major structural subassemblies), and certain system E‘:‘if

requirements (such as high damping) may lead to the use of special materials (such as : -

.' composites which have anisotropic material properties). . }‘T‘:
;tiz
>| Path 7 is not quite as obvious as some of the other relationships, at least to the '_:SL
! extent that estimation algorithmms influence the physical system. It is not difficult to 3\3
E‘ think of examples where the svstem affects the selection of estimation algorithms. Fluid ‘:":E'
t‘ systems such as pumps and heat exchangers, for example, might lend themselves more to v

'E'_

nonparametric estimation which identifies input-output relations as opposed to parametric

: o,
N estimation which identifies specific inodel parameters. Nonparametric estimation might N
n i
3 also be more suitable for certain types of joints. Conversely, it is not altogether implausible P
x 2
' that the eventual inability to adequately model (i.e. satisfactorily verify candidate models) ..,
- e
-~ . . . o . . <.
certain physical phenomena snch as fluid turbulence or Coulomb friction, either analytically ::-'.\
1\ \“
“ - . » . . A (.
~ or empirically, might lead to alternative designs. S
n\. "'-.'
. . . . o . o
e Path 8 is rather obvious. The physical system and the service environment for which NI,
) Gy
S \Ta
Y it is designed clearly dictate the tcsi hardware and the nature of experiments to be per- '_"ﬁ
¥ N/
o~ s
o formed on that hardware. Some aspects of the space environment are difficult to simulate b
b
5 experimentally, e.g. the thermal environment. This experimental limitat'on has helped .
4 L
\ . . . . - - - " N
.:; to motivale interest in composite materials which have a net zero coefficient of thermal ,f\
A S
L
"’
S. expansion, so that the effects of thermal deformation are mininiized. A
» g
f The interplay between estimation algorithms and analytical models (Path 9) on the o
\..
N . . . . . .
[:: one hand, and physical experiments (Path 10) on the other is also fairly obvious. As a .:j
. o
w.‘
—
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general rule, the simnpler the model, the simpler the estimator, and vice versa. Complex
models will require more sophisticated estimators able to discriminate among the more
subtle eftects of parameter variations and (or) input-output variations. The comnputaticnal
ciliciency of estimation algorithms will have a major influence on experiments conducted in
space, and on the amount of data which can be recorded and processed. Models which lend
themselves to recursive estimation will probably be better suited to on-orbit estimation

than those which require powerful nonlinear search algorithms, for example.

1.3.2. Model Development.

Because of their size and complexity, and the difficulty of simulating the environment
in which they must function, large space structures will require a tremendous amount of
information to be identified. This information, including both analytical and experimental
data, will of necessity be accurnulated over a period of time, perhaps years. The most
efficient and useful means of storing the information is in the form of verified analytic 1l

models.

The foregoing section discussed the logical process of creating such a model (i.e. iden-
tifying a physical system). This section addresses the problem from a programnatical
point of view. When viewed in this way, the process of model development takes on an
evolutionary character and provides the program setting for identification. The model
development process may be divided into three phases: (a) Initial Definition, (b) Experi-
mental Verification and (c) Final Certification. Initial definition includes the statement of
modeling objectives, the forimulation of a strategy for ach. ving them and the construction
of a basic analytical model. These tasks are a prerequisite for identification. Certification
is included as part of the model development process for large space structures because
of the need for quality coatrol on the complex models which will be “flown” with the

structure as part of its control system. Initial definition and final certification essentially
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constitute the front end and back end, respectively, of the identification process founded

upon experimental verification. Each of the three phases are discussed in the subsections

which follow.

1.3.2.1. Initial Definition.

Although a model may be expected to undergo many changes during the course of its
development, initial definition will prove to be important. Foresight used in creating the
model will not only reduce the number of changes ultimately required, but can make the
inevitable changes easier to implement. It may not be possible to identify all modeling
objectives initially. However, a deliberate effort to define these objectives at the outset,
followed by the formulation of a strategy for achieving them, will provide the foundation
for the subsequent development of verification procedures. As previously discussed, the
definition of modeling objectives should not only address the nature of the physical systemn
and how the model is to be used, but also how the model will be verified, including con-
sideration of experimental techniques, and the estimation algorithms available to process

various forms of experimental data.

Structural models used for control purposes must be greatly reduced from the original
finite element models, which are likely to contain tens of thousands of degrees of freedom
(with corresponding equations of motion). The models used for purposes of identification
must be similarly reduced. Not only does the magnitude of the identification effort grow
exponentially as a function of the number of degrees of freedom and number of parameters
to be estimated, but numerical procedures may break down because of round- off error
and ill-conditioning. The chance of identifying a system incorrectly also increases with the
size of a model; the larger the number of parameters and (or) input-output relationships

to be estimated, the larger the number of measurements required.
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Thinking of a system as a mapping from a space of input functions to a space of
output functions, one can classify system models as either parametric or non-parametric.
The use of these two types of models is generally governed by the extent of a priors
information that is available about the physical system. In parametric models one starts
with an assumed mathematical description of the system. The identification task then
reduces to the determination of the values of one or more of the unknown parameters
that are involved in the model’s description. A search is conducted in a finite dimensional
parameter space. If for instance, the system is described by a set of ordinary differential
eguations, then the coordinates of the parameter space may be taken to be the values of
the coefficients and the values of the initial conditions. If the identification is carried out
using a test input signal, then the unknown parameters, if any, of that signal could of
course increase the dimensionality of that space. Nonparametric identification deals with
creating an adequate input-output description of a system by a search in function space.
Examples of nonparametric models are impulse responses, frequency response functions,
covariance functions, Volterra series and Wiener series. Typically, the amount of a priori
information needed for parametric models is greater than that for nonparametric models.
This is offset by the, generally speaking, more difficult task of searching in function space
(in principle, an infinite number of parameters) for non-parametric models, as opposed to
searching in pararneter space for parametric models. Whereas large errors can result if the
order of a parametric model is incorrect, nonparametric models have the advantage that

explicit specification of the order of the system is not necessary.
1.3.2.2. Experimental Verification.

Experimental verification involves four steps: (1) validating the basic structure of
a model, i.e., the equations of motion in symbolic formn, (2) estimating the parameters’
values or input-output relationships of that model with an acceptable degree of confidence,

(3) ensuring that the model is in satisfactory agreement with experimental data, and (4)

15

I L T o el PP IS W o T N R o 2ae o S T, DO I aal & A S




:

AL RSN INGEAIA LN IA TN LWIT MM O™ Te c A AT R e N LTI LML L WL R YL FL L Y. YA T e ATe 3" 8 e s .m w & e e e am o o

evaluating the limitations of the model based on initial modeling assumptions and the

degree of success achieved in the first three steps. These steps are typically repeated until

the desired results are achieved, or until no further improvement can be made to the model.

While non-parametric models may be employed in isolated cases, e.g. to model com-
ponent interfaces, it is anticipated that parametric models derived from finite element
analysis will comprise the major portion of models used for structural analysis and con-
trol of large space structures. Statistical estimation is then relegated to the estimation

of parameter values, assuming that the basic structure of the model is correct. Valida-
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tion of this assumption is generally not an easy task. Nor is it always straightforward. 3 .‘

I

In practice, parameter estimation consisting of steps (2) and (3) is carried out, and the el

R

. results examined for consistency with a priori information about the model. If the results S&

are inconsistent, either because the parameter estimates are unreasonable, or because the Ew‘;

-~ o

k‘. response of the resulting modei is in disagreement with some of the measured response, o

P

. the validity of the assumed model is in doubt, i.e. some aspect of the model may be in o
-

error. The identification of modeling errors can be difficult. At the present time, there

,f. are no direct means for identifying modeling errors; the analyst must rely upon his or her ::,,..

L 7 ‘s .
- understanding of the system, the model, and the experimental data in an intuitive process N

of trial and error. Some estimation algorithms provide more information for use in this y

':.J

. process than others. ree

If. ;%4

» '-4

3 ‘i

an The estimation of parameters or input-output relationships is conducted by experi- o

[J‘: mentation on the system. One subjects the system to a set of test inputs applied at certain -y
A &
"'$: locations, and measures its response at the same or different locations. In general, it is hﬁ

A

not possible to identify a universally valid model from specific sets of input-output data,

|

for the model may be left deficicnt in aspects which depend on some information that 3
NS

may be lacking from the specific test inputs used. One therefore aims, more modestly, at :‘E
.

. . . . . -
deciphering & model from aniong a class of models, M, using a class of inputs, /, applicd é
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at a set of locations, L,, and measuring the responses from among a class of outputs, O,

at a set of locations, L, so that a suitable error criterion, R, is minimized.

An important aspect of the experimental procedures is the characterization of the noise
in measurements of the inputs and the outputs. This knowledge plays an important part
not only in the choice of the algorithms used subsequently for the search procedures but also
in the choice of the error criterion, R, which the search procedure attempts to minimize.
For measurement errors that affect mainly the measured output of the system, the error
criterion is generally related to the difference between the measured response and the
model response; for cases where input measurement errors predominate, the criterion often
relates to the diflerence between the measured input and the input that corresponds to the
output obtained from the model. The criteria chosen and the a priori knowledge about the
measurement noise affect the statistical properties of the parameter estimates obtained.
Thus the measurement process, by affecting the error criterion, has a direct bearing on the
degree to which a model is verified. By affecting one’s confidence (statistically speaking) in
the results obtained, it also affects the extent to which the model obtained may be deemed

correct, i.e.“valid.”

Statistical estimation is accompanied by measures of statistical confidence attached
to the estimates. In the case of parametric estimation, this information is expressed in the
form of a parameter covariance matrix. The diagonal elements of this matrix correspond
to the varances of individual parameter estimates, while the off-diagonal terms define
the correlation of the estimates. A model may not be completely verified if some cf the
parameter estimates are highly correlated, even though the corresponding variances may

be small. In general, uncorrelated estimates with small coefficients of variation are sought.

In addition to obtaining reasonable estimates of parameter values and (or) input-

output relations with a high degree of confidence, it is necessary that the response predicted
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by the model be in satisfactory agreement with measured response data. With both

conditions satisfied, the rnodel may be considered to be verified. If some of these conditions
are not met, the model may be considered partially verified. A partially verified model
can be of practical use provided that the unverified parts of the model are identified, and

that they do not play an important role in achieving primary modeling objectives.

The predictive accuracy of a model cannot be assessed until the model has been
verified. Additional information is, however, required to evaluate predictive accuracy. This
additional information includes a definition of model uncertainty as well as a definition of
measurement uncertainty (noise) associated with input and output measurements. At the
present time such information does not exist, although it could conceivably be derived from
past experience. As a practical matter it may be difficuit to differentiate between modeling

error and measureirent error, in which case they would have to be treated together.
1.3.2.3. Final Certification.

Final certification is iooked upon as a formal procedure for qualifying a model. It
should be conducted independently of the model verification effort to ensure that modeling
objectives have been satisfied, that requirements for model “fidelity”, the quality of being
true to the physical model, and “robustness”, the quality o1 being unperturbable or stable
in the sense that it doesn’t change over a broad range of input- output conditions, have
been satisfied, and that requirements for predictive accuracy have been satisfied. It will
probably include independent analysis based on the verified model, as well as a thorough
review of the model verification report. Without adequate modei verification, certification

will not be possib.e Verification must provide the answers to the questions posed in

certification.
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1.4. Classification of Identification Methods.

Numerous surveys and reviews have been written on the subject of structural systemn
identification. The dominant themes have been (a) to organize the rather extensive body
of literature within some logical framework, (b) to present case studies or examples which
typify particular “methods,” and (c) to compile a bibliography. The term “rnethods” refers
sometimes to generic categories, and sometimes to the methods of individual authors.
Case studies are problem dependent and vary from method to method, offering little
opportunity for the comparison of methods, either generiz or individual. Bibliographies
tend to reflect either explicitly or implicitly the perceptions which different writers have

of system identification.

The intent of this section is not to repeat the work which other reviewers have already
done, but rather to build upon that work by helping to interpret some of the perceptions
and suggesting a more general framework of classification within which others may be
placed. Whereas other reviewers have tended to use hierarchical classification systems
presented in terms of technology trees, the approach here is to classify the methods without

prioritization. Priority systems may later be imposed to derive technology trees if desired.

The literature on structural system identification tends to fall into three distinct areas

or fields:

I. Identification of Input-Output Relationships
1. ldentilication of Modal Characteristics

111, Identification of Model Parameters

The fields are distinguished from each other by their underlying assumptions, which
pecome progressively more restrictive, and more difficult to satisfy. For example, input-

output relationships need not be linear, although linearity is often a good assumption.

19

T T Y TR NS S TR TSR T WE N IS N v

L P

.
N
l".

S
NS AA
2SS

P4
4
e

)

.”
« a2 a4 O

AN S

1 ;"

h s
vido o

7

T4t A
T I XA

AL
XA P,

LV R RN )
A N RNy

l‘l‘vs!

NS UL

s

XL ST

,
L

-

“

™

Sy

)

¢,
»

a‘E
]
‘.-
<




ol BASRE 2 P LRI RS

AL ALAR

R R R R I I R I R I R

~ Even il linear, they need not lend themselves to modal representation. On the other hand,

the identification of modal characteristics not only carries with it the assumption of linear
behavior, but also the assumption that modal characteristics exist. The identification of
model parameters is based on the assumption that an appropriate model exists, and in

addition that the structure of the model, which defines the parameters, is known.

The escalating degree of complexity is evident in the chronological development of each
field. The identification of input-output relationships matured during the 1970's with the
availability of digital data acquisition and processing equipment; the identification of modal
characteristics now appears to be maturing as more powerful micro- processors become
available. methods and scftware are subjected to broader application, and commercial
benefits are realized. It is difficult to foresee when the identification of model parameters
will mature. Perhaps the motivation provided by the desire to build anc control large

space structures will prove to be a significant factor in this process.

In addition to the order of complexity among the three fields, an order of dependency
is also apparent. Structural model parameters can be estimated either from modal char-
acteristics, input-output relationships, or from time- history data. Modal characteristics
can be estimated either from input- output relationships or time-history data. and input-
output relationships, as the name suggests, are estimated directly from measured input

and output time-histories.

Before proceeding, it is worthwhile to consider some of the reviews which have pre-
viously been published. The more recent ones include reviews by Allemang and Brown
(1986) with 79 references [1|, Hsieh, Kot and Srinivasan (1983) with 63 refcrences [2],
Martinez (1981) with 86 references (3}, Ibanez (1979) with 132 references [4], and Hart and

Yao (1977) with 68 references |5|.
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The survey paper by Allemang and Brown (1| offers a brief overview of methods used
in “Experimental Modal Analysis,” (Identification of Modal Characteristics). it is the only
one of the foregoing review papers which addresses this field in particular, but represents
the many papers currently being generated within the “modal testing comnmunity.” This
community supports the annual International Modal Analysis Conference (IMAC) and a
new journal of the Society of Experimental Mechanics called “The International Journal

of Analytical and Experimental Modal Analysis.”

Hsieh, Kot and Srinivasan (2] present a topical discussion of system identification di-
rected toward nuclear power plant applications. They make no attempt to classify methods
or present case studies. They do discuss some of the important issues involved in system
identification, such as the identifiability of a system, the significance of a priort knowledge
about the system, and the reliability and accuracy of system identification techniques.
The authors point out that few reported efforts to verify system-identification methods
were found, and those used artificially generated data. They conclude with a statement
emphasizing the importance of understanding the reliability and limitations of system iden-
tification techniques for real nuclear power plant structures before any attempt is made to

incorporate these techniques in the design process.

A literature survey by Martinez is included as one chapter in his doctoral disserta-
tion |3]. Here the emphasis is on aerospace applications rather than large civil structures.
Martinez’ dissertation develops the Extended Kalman Filter Equations in the frequency
domain for purposes of parameter estimation. The state space formulation and stochastic
process techniques are used to obtain (theoretically) reliable statistical parameter esti-
mates. Martinez’ literature survey and his subsequent development of the Kalman Filter
approach for parameter estimation in both the time domain and the frequency ¢ >main
offer one of the more thorough reviews of this approach to systcm identification found

in the current literature. Apropos of on-orbit identification, Martinez points out that for
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reduced order models (representative of those which might be used as plant models with
control systems of large space structures) the combination of state and parameter estima-
tion, resulting in an optimal filtering solution, is an attractive alternative in that it uses
data in the ¢im-~ domain where it is actually measured and recorded. The advantage of

this approac: ¢ that computations can be made recursively in real time.

Ibanez’ review paner 4] is significant in that it offers a reasonably thorough review of
the literature in model parameter identification up through 1978. In reviewing the “bewil-
dering number of methods” which have been investigated “to acquire and use experimental
data to unprove models,” Ibanez sets the tone of his review by citing this quotation by
Lord Rayleigh (1884):

“By a fiction as remarkable as any to be found in law, what has once been published,

even though it be in the Russian language, is spoken of as known, and it is too often

forgotten that the rediscovery in the library rmay be a more difficult and uncertain
process than the first discovery :n the laboratory.”

Ibanez includes thirteen example problems in his review, and summarizes a number
of earlier reviews including those by Hart and Yao (5], Berman [6], Collins, Young and
Kiefling (7], Gersch (8], Pilkey and Cohen (9], Rodeman and Yao (10|, Schiff [11], Young
and On |12} and Natke [13]. He presents the technology tree originally proposed by Collins,

Young and Kiefling, and extended by Hart and Yao, whose primary branches divide mode!

parameter identification into Time-domain and Frequency-domain methods.

Berman [6], on the other hand, chooses to divide the field into three main branches:
(1) “Direct Verification” where a comparison is made between the response of a prior
model and that of the actual structure, followed by changes to the prior model until the
theoretical and measured response agree to within a specified error criterion; (2) “Direct

Modification™ (in which category he places his own approach) whereby test data are needed
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to make direct modifications to the model without first comparing the response of the two,

and (3) “Direct ldentification” which yields a model directly without a prior medel.

Gersh [8] suggests a scheme for classifying model parameter identification based on
dividing the field into three main branches consisting of: (1) Equation Error Methods,
(2) Output Error Methods and (3) Maximum Likelihood Methods. He points out that
Maximum Likelihood Methods yield a measure of statistical reliability of the parameter

estimates.

Schiff |11} suggests yet other systems for classifying identification methods including
classification by method of excitation and classification by method of data analysis. The
latter is similar to the Time-domain and Frequency-domain technology trews proposed by

Collins, Young, Kiefling, Hart and Yao.

It is clear that there are many ways to view this body of knowledge. Different ways
accomplish different objectives (and tend to reflect the perception of different writers).
What is most important, however, is that all facets of system identification be recognized

for the sake of completeness; they can be prioritized later as previously suggested.

Having taken the first step in the classification of identification methods by dividing
them into identification of input-output relationships, modal characteristics, and model
pararneters, one may proceed to further classify the identification of model parameters.
Figure 2 provides some insight for doing so. The identification process therein is seen
to embrace three elements consisting of an analytical mcdel, physical experiments and

estimation algorithms. Methods can therefore be classified according to:

A. The model and its corresponding parameters,
B. The experimental data used in parameter estimation, and

C. Theestimation algorithms used to estimate parameter values from experimental data.
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Table 1 offers a breakdown within each of these categories. The column on the right

hand side of the table suggests a code which may be used in the classification process.

Table 1.  ldentification of Structural Model Parameters:
Classification of Methods.

CATEGORY/SUBCATEGORY CODE

A. Model/Parameters

o Lumped Parameter Model ‘ LPM
- lumped mass -M
- damping constraint -D
- spring stiffness -K
¢ Finite Element Model FEM
- linked FEM parameters (v,E, I, h,D, etc.) -L
- submatrix scaling coefficients (mass, stiffness) -S
- distributed parameters (modal, other) -D
¢ Physical Matrix Model (FEM origin not available) PMM
- matrix elements -E
- submatrix scaling coefficients -S
- distributed parameters -D
¢ Modal Matrix Model MMM
- component (substructure) modal matrix elements -C
- system modal matrix elements -S
¢ Equivalent Continuum Model ECM
- equivalent continuum parameters (EJ, GA, etc.) -C
- discretized equivalent continuum parameters -D

Most of Table 1 is self explanatory. Under Part A, i. is seen that different types of
parameters are defined for different types of models, so that it is necessary to specify the
type of modei and type(s) of parameter(s) which apply. Part B could be coded similarly,
although it may not be necessary to distinguish among the types of sampled time-history

data or averaged tirne-history data being used. If so, appropriate codes could easily be

added.
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Table 1. Identification of Structural Model Parameters:
Classification of Methods (continued).

CATEGORY /SUBCATEGORY COobl

B. Measurement Data

o Sampled Time-History Data STH
- acceleration, Z(t)
- velocity, z(t)
- displacement, z(t)

- input, u(t)
e Averaged Time-History Data ATH
L [T E(t) dt
- etc.
e Characteristic Functions
- impulse response functions, A(t) IRF
- frequency response functions, H(f) FRF
e Modal Properties
- real modal properties RMP
- complex modal properties CMP

C. Estimation Algorithm

e Direct vs. [terative Dorl
o Deterministic vs. Statistical DorS
e Batch vs. Recursive Data Processing Bor R
¢ Pseudo Inverse vs. Optimization Solution lorO

The classification of estimation algorithms is treated a little differently. Estimation
algorithms are characterized by four properties, each consisting of a pair ol alternative
descriptors. For example, the first pair consists of “direct” vs. “iterative.” Direct algo-
rithms lead to a solution in one step and are used primarily in linear estimation, i.e. when
the measurement data are linearly related to the parameters being estimated. Iterative

methods are used primarily in nonlinear estimation.

The second pair of descriptors has more to do with the interpretation of the estimator,

than its mathematical form. For example, a least- squares method can be interpreted either
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deterministically or statistically. The statistical interpretation is significant in evaluating

the reliability of the estimates.

Batch data vs. recursive data processing is an important consideration in determining
storage requirements and processing time for the estinator. Recursive algorithms offer

advantages in ground-based as well as space- based operations.

The pseudo inverse vs. optimization methods differ primarily in their ability to han-
dle constraints. Optimization methods permit greater latitude in handling constraints,

particularly inequality constraints which are routinely treated in nonlinear optimization.

It is a fairly simple matter to classify a given method, whether generic or particular,
by going through Table 1 and simply checking off the appropriate categories. For example,
Martinez’ [terated Extended Kalman Filter method applied in the frequency domain to a
finite element model with parameter linking would be classified as (FEM-L/ FRF/ [,S,R,]).
The inodel- parameter, data, and estimation algorithm descriptors are separated by slashes;
the characteristic properties of the estimation algorithms themselves are separated by

commas.

In addition to serving as a guide for the classification of existing mode! parameter
identification methods, Table 1 may be used in the formulation of new methods to the
extent that it suggests different combinations of model-parameters, measurement data and
estimation algorithms than those presently in use. The selection of alternatives within each

of the three categories can be guided by the particular requirements of a given application.
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"SECTION 2. SYSTEM MODELING: THEFORETICAL BACKGROUND.

System identification hinges around the notion of models [14]. Models for large space
slructures may he thought of in terms of the task that the structure is to perform. Some

of the uses are:

o Models for simulation purposes, where knowledge of the system is the intended use.
- such models may be used for diagnostic purposes (e.g. early fault detection in
large space structural systems) and may be helpful in the design of parts of the

structure where knowledge of some subsystem is needed.

> Models for prediction purposes, where the aim might be to control the system.

- attitude control, pointing accuracy, shape control of antennas, etc.

The model selection may be thought of in terms of:

a) The delincation of a set of models, S, from amonq all possible models (e.g. lin-
ear/ nonlinear, static/dynamic, discrete/continuous, parametric/non-parametric).

b) The choice of a class of models from this set (which can often be transformed into
another) and the structural parameterization of these models (e.g. models based
on frequency domain characteristics like mode shapes and eigenvalues as opposed to
models that use mechanical properties like EI, EA| etc.). The order of the model, if a
parametric class of models is chosen, needs to be specified at this level.

c) The complete specification of the model.
2.1. Choice of Models.

The choice of the type of model to be used is controlled largely by the intended use of
the model, and the a priori information available about the physical system. The model

arrived at in ¢} of course need not be the final model that is chosen for the system, or

R
BF
“

3
{
$

AR

A

vy
LAARS

i\

) t.'s".'-:.;""l

'_."" _.
DIl

oA e

P
5 %

g
2N

SGTE A 2
28 B3

L4

>l
e,

.' »

R AN 19030 1o
.....‘_..'! CIPCRS
R KW

AR A
/"1!! D

LA

120

W
>

R P

l
o
[ S




Vi MNARS Gy  IAALERRL SNV NEY, . s LRTEE . I T WS

N i s R SAAA M St

| JRAASNNLY

N

o

the one that may be used, e.g. for control purposes. Some considerations gerinane to the

model selection process are:

o Where are the dominant noise sources in the experimental testing? Can they be i
“distinguished explicitly in the chosen model?
e What kinds of parameterization are needed? Are any of these parameters being |
measured directly? Can any available a priori information be implemented in the p
model? In certain models, this information may be directly implemented, while in . ;:E
others, this information would only lead to implicit relations. Such implicit relations '-?
generally impose a heavy burden on the computing aspects of the identification pro- ’ ‘:
cess. For instance, models that attempt to identify parameters in the stiffness matrix :i{f
N
of a structure may use experimental information regarding the lowest fundamental ‘\E
N

frequency of the system as an implicit relation (constraint).

\fnl

3

¢ Is the complexity of the model (the order of the model and the number of parame-
ters) commensurate with the proposed uses of the model? Can such a complex model
be handled within the general experimental and computing environment in which the
identification process is required to be performed? Can a maximum bound for the
model complexity be assessed, given a certain environment in which the identifica-

tion process is to occur? This would delimit the set of models from which the most

ol TRRRRARREA T

“suitable” one would be sought.

Ry
e For the model complexity chosen, is the experimental design sufficient to yield a :‘_
. 4
unique set of systemn pirameters? g
i
S
The last issues are of special importance to large space structural systems. The N
»
. . + . - . ‘
problem of finding the order of a system modei which is intended for a certain use is :'C
A
indeed a nontrivial problem, especially for large spatially extended structures. The extent X
v
. . 3!
of parameterization and the order of the system are often related to each other in the N
identification of a large structural system. For instance, in the finite-element approach the i
N
b
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number of elements controls the number of parameters in the sys.em, while the number
of nodes controls the order of the system. Generally speaking, the number of elements

increases with the number of nodes.

Another important aspect of the chosen mode] deals with the uniqueness of the pa-
rameters to be identified. Put alternately, is there more than one set of parameter values
that will yield the same input-output relations? If so, then it would be impossible to dis-
tinguish the “true” model from the various models that each of these parameter sets yields
[15]. Though this problem has not been sufficiently addressed in the literature to date, it
is one that is of great engineering significance, for the choice of one inodel as opposed tc its

competitors, in a non-unique situation, can cause substantial errors in the determination

of parameters of engineering significance, like shear forces and bending moments in struc-

tural systems [16|. In general, the degree of non-uniqueness of 2 model used depends on

LY
5

the a priori information about the system, the experimental testing and the error criterion

et

Py
]

used. Often, though not always, it increases with the system’s complexity, {17].

[
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Both parametric and non-parametric techniques are used in the identification of large

structural systems, [17]. The non-parametric methods are basically input-output descrip-

tions of the system in the form of generalized impulse responses or transfer functions. For

PR
A

multi-input and multi-output systems, transfer functions are often employed. The para-

2
%
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metric models generally involve representation of the system for large space structures

)

‘A
YA

through differential equations. While continuum representations for large space structures
through the use of partial differential equations are infrequent in practice, discrete spa- N
tial formulations through the use of ordinary matrix differential equations are relatively &‘\

comimeon. !.,‘

"L LA FOF 05N S AT b e WX TR A e wE——.

By and large, the models used for large space structures are chosen, in practice,

o from the set S which can be described by the following adjectives: linear dynamic, time-
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invariant, causal, parametric, and either stochastic or deterministic. Therefore, this report

will concentrate, though not entirely, on these types of models. Unless otherwise mentioned

or contextually obvious, henceforth the set S shall denote this restricted set of models.

Input-Output Description: Consider a finite memory system whose output, y(t,}, at
time to, depends on its input u(t), for t < to. Let u,, for 1 = 1,2,---, /N be samples
taken periodically at times to —1At. The response y(to) can be represented approximately
by the relation j(to) = f(u1,u3,---). The multidimensional Taylor series expansion then

yields

N

N N
¥lto) = Zadug + Z Z agy Uity +
1

N
—

N N
YN aikuiujur 4 (1)
1 1

This polynomial, called the Kolmogorov-Gabor (KG) polynomial (18], assumes that the

1

system'’s initial conditions are zero. If a,;, ai;x, etc. are all zero, then tne system will, of
course, be linear. Denoting a, = h;At, and taking limits as /V goes to infinity, we get for

such a system,

y(t) = /o ky(r)u(t — r)dr. (2)

Similarly denoting a,;, = h,, AtAt, and letting N go to infinity, it is easy to show that the

second term on the right in the KG expansion yields in the limit,

/ / ha(ry, 72)u(t — 7y)u(t — r2)dridrs. (3)
0 J0

The KG series can thus, in the limit, be expressed as an integral series which is called
the Volterra series. This is the general input- output relation of a nonlinear system whose

input is u(t) and whose output is y(t).
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t t pt
y(t) = /0 hi(r)u(t — r)dr + /0 /(; ka(r1,m2)u(t — n)u(t — 72)dridr

t et ot (4)
+ / / j ha(ry, 12, m3)nlt — r)u(t — ro)u(t — r3)dridradrs + - - .
o Jo Jo

The term h;(t) can be recognized as the impulse response of a linear system; the kernels
of the other integrals, namely ha(t),t2), ha(t;,t2,t3), - etc., are called the generalized
impulse responses and provide the nonlinear contributions to the complete response of the
system. For instance, the kernel hj(ty,t2) provides the “cross-talk effect” between the
two delta-function inputs at tinies t; and t,;. Notice that the expansion in many ways is
analogous to a polynomial expansion for each term is analogous to the number of integrals
involved in each term. For physically realizable systems, the kernels have the following

properties:

h.(h,tg,-'-,t,):() for t]<0 j=1’2""9i; (50’)
hi(thtZ""sti)"‘O for t] =+ 00 ]= 1,2,"',i; (Sb)
h, is symmetrizable. (5¢)

Thus the Volterra series gives a general relationship between the input and the output
of a nonlinear system. For a system modeled by such a Volterra Series, identification
of the system would simply mean the determination of the kernels, h,. However, the
determination of these kernels is often a formidable task, in practice. The identification
scheme being nonparametric, it is to some extent nonphysical. In most applications the

series is terminated after a few terms, [19].
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A more computationally tractable approach for nonlinear systems was developed by
Wiener by using Gaussian white noise (GWN) for the test signal, (20]. The input-output

relation can then be expressed as

y(t) =D Gi{gi.u(t)} (6)
1

where the g; are functions of 1 variables and are analogous to the impulse kernels for the
Volterra series, and the functions G, have a convenient orthogonality property for white

noise signals u(t), i.e.,

ElGG,)=0 for i<j. (7)

The first two terms of this series look like

Gi{gnu(t)} = /—°° g1(m)u(t — n1)dmy, (8a)

Gg{gg,u(t)} = /oo /oo gg(fl,fz)u(t - Tl)u(t — Tg)dfld‘rg
TTeenm (8b)

[+ o]
—P/ 92(7'1,7'1)41'1

- 00

where P is the power level in the GWN. The kernels can now be determined, relatively
easily, by the correlational techniques. While this method has been used in the identifi-
cation of some biological systems, very few applications to large structural systems have
been undertaken to date. Reference [20] is probably the only one that has used the method
for successfully interpreting the nonlinear response of a large structural system. A study
done on the nonlinear identification of soil using a similar teclinique also indicates that
the method may have promise in the mapping of inputs applied at specific locations, when
in the nonlinear regime. Such methods may be of particular use in the determination of

nonlinear structural responses during docking maneuvers for space vehicles, and indeed
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-warrant further research. Perhaps the most important restriction of the series representa-

tion corsidered above is that the model is applicable when the input-output relations are

single valued.

The digital determination of a function such as hy(z;,z3) of course requires that the
function be determined at a finite number of sample points. One can thus “parameterize”
the generalized impulse functions obtaining estimates of their values using an appropriate
sampling interval, say At. The choice of the number of points and the sampling interval,
At, used to represent these functions depends on an a priori knowledge of the system. The
Wiener approach has great computational advantage over the Volterra series representa-
tion. Yet, the computational effort required for higher order kernels may at times be high.
For instance if h, is approximated using 10 samples (parameters), h; would roughly need
55 parameters (taking into account the symmetry property of the kernel) and h3 would
need about 220. The approach, it should be remembered, is applicable to systems driven
by GWN, a circumstance which may be difticult to arrange in the controlled testing of

large structures.

For linear systems a commonly used model is the transfer function model. For an
output vector yx € RP, and an input vector ux € R™, one can express the input-output

relation by

w) =% / his (t = )y (r)dr (9)

Taking the z-transform (Fourier or Laplace transform) yields,

yk(zk) = T(2)uk(2k) (10)

where
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a Vi = (Yik, Y2k, Ypk)

ul  (Wika U2k, Umk)

with T'(z) the transfer function for the system. Despite difficulties often encountered,

e.g. the handling of noise, initial states, common (or closely spaced) poles, this form of
modeling (or a variant of it) has often been used in structural systems because of the
simple interpretation of the elements of the matrix T. Any element Ty, of the transfer .
function may be thought of as a transmittance between the input u;x and the output, y,.
There are a few advantages [21] to the use of transfer matrix representation for systems
that are thought to belong to the set M. They are:
e The transfer matrix representation is unique for a fixed ordering of inputs and
outputs.

e The transfer matrix has a sitnple physical intrepretation.

e Canonical forms that are observable and controllable can be derived from these

RS
3,

'

»

models rather easily.

7

While the first two points are somewhat obvious, the third point needs a little elaboration.

. e e »
”
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The transmittance matrix equation, when discretized, can also be put in terms of the input

P 4
“Tals

Ay

in the time domain by defining
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where H, are called the Markov parameters, (21], and are simply the weighting patterns for
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the various impulse responses between inputs j and responses i. These Markov matrices

R
5\,’

o

enable us to construct the sp x sm Hankel submatrices, H;, defined as:
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Hy H, -+ H,,
H, Hy, --- H,
LT ‘ (12)
Heoy Hy -+ Hae 2

The advantage of such representations is that they are linked to the state-space representa-

tion of such systems in a neat manner which permits observable and controllable canonical

forms to be obtained, often directly {15]. R

AP
i

-
17
L4

A B

While other multi-input-multi-output models are often discussed in system identifica-

v,
<

tion literature, e.g. Matrix Factor Description (MFD), their use in system identification

L

|

' may be questionable. Such representations have not yet been used in large structural :Q}\'?

E systerus. Eﬁ::

|

; Explicit Representations: Large structural systems are often continuous in nature and Eg;
their dynamics could generally be represented through the use of Newton’s laws in terms of :‘23
partial differential equations (PDE) where the displacement of a infinitesimal mass element gs%
of the system, y, is governed by its geometrical position vector, r, relative to an inertial -i
reference frame, its acceleration, the restoring forces (linear or nonlinear) that the rest of :£E§

R
¢

WA
LAAA

i

the system exerts on the mass element, and the externally-applied forces. This can be

expressed as:

PRI
“-"r
LAy

N TS XA PP EEER S (44 e

d?ylr,t dy dy O
'"(')_Ziz ) Fr(y, 55mt) = Fly, o mt) (13) R

with suitable boundary and initial conditions. The function m(r) represents the mass in b
a small volume around the coordinate location r. The restoring forces F,, could be linear .fd
o

(in ¥, y) or nonlinear, and the applied force, F', may include dependence on the response s@

2

of the system, y, possibly indicative of feedback control. While in many situations such

kY
e
-

»
X
Xy

representations are helpful in understanding the dynamic behavior of structural systems,

it must be remembered that continuum models, like all other models, are only descriptions
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of physical systems, and therefore have inherent limits to their applicability. For instance,
the validity of the statement that a continuous beam has an infinite number of natural
frequencies of vibration rmay be questionable in view of the very large, yet finite, number
of atoms it contains ! Since the PDE representations are generally difficult to handle
in all except the simplest structural components, most structural systems are discretized
(generally through the use of some technique based on variational methods) and described
by a finite number of degrees of freedom. Such models can then be expressed by a system
of ordinary differential cquations (nonlinear in general) with appropriate initial conditions.
In practice, the mode!s that have been used most extensively for large structural systems
are those described by linear matrix differential equations of the form:
d?z(t) dz(t)

M_(iTi—+D—dt—+KI(t)='f(t) (14)

with appropriate initial conditions, where M, D, and K are the mass, the damping and
the stiffness matrices. The vector f(t) is the forcing vector and often corresponds to the
measured input signals to the system. One set of model parameters which would describe
such a model would be the unknown elements of the M, K and D matrices. All such
unknown parameters could then be collected into a parameter vector 8, the determination

of which would be the intent of the identification methods to be used.

The creation of such models, it should be emphasized, is a process that involves a
holistic appreciation of the system’s behavior and of the behavior intended to be portrayed
by the model. It is a process that, rather than being deductive, is primarily inductive and
is intuition- and experience- based. To date, there are very few analytical guidelines for
the building of models. For instance, the order (generally twice the number of degrees
of freedom chosen) of the model used, may be an important determinant of how well
the description(model) of the system reflects that part of the system’s behavior which

is deemed to be of interest. Often, the order of a linear structural model is implicitly
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expressed, e.g., by the number of mode shapes of interest. The description of different
aspects of a given system’s behavior may, and often does, require different ordes models.
Thus the validation of models can only be undertaken in the context of their intended use.
This will be pursued further in the discussion of the validation phase of the identification

process.
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An important aspect of model-building which has not permeated into the large-space-

structure identification area is the concept of identifiability. The ability to be able to

A

e

uniquely determine the parameters of a given model depends upon the parameterization

»

chosen, the error criterion chosen and the “structure” of the mode! chosen. All these
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aspects are affected by one's a priori knowledge of the system. The larger the number

s
b

of parameters in a system, intuitively speaking, the better the fit between the model

response and the system response that one should expect and the greater the problems
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'r‘o:' .l
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with non-uniqueness. The non-uniqueness problem can be best explained by the first order

A
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(note that our linear matrix differential equation system can always be put in this form)
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noise-free system:
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y(t) = Cz(t) (15b)

~
P4
s

where the state vector £ € R", u € R™, and y € RP. Let the matrices A, B, and C

-
r

2

A2

be fully parameterized, i.e. there are n* + nm + np parameters to be estimated. It is

easy to show that the systemn described by the triplet (A, B,C) is equivalent to an infinite
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q
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number of systems described by (TAT~',TB,CT), for any nonsingular matrix T, in the

-

. . v . .*

sense that all these systemns will huve the same input- output relations ! It is thus seen (':;'
o

. R . P A

that the input-output measurements determine an equivalence class of systems described ';;
3

A

by the equations above. Since the equivalence class always consists of an infinite number of

/
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elements, the identification procedure is non-unique. If a priori knowledge of the system
is available, one can improve this situation, and perhaps even avert it completely, by
suitably fixing certain elements of the matrices 4, B, and C. This leads to the concept of
canonical forms(not to be confused with the Jordan Canonical Form one encounters in the
diagonalization of matrices). Without going into the details [16], three important truths
relating to these canonical forms are listed here:

¢ For all systems with the same n, m,and p it is not possible to arrive at the same

canonical form. A set of canonical forms needs to be used to describe the general

systems described by the difference equations above.

e The set of canonical forms is finite.

e The elements of the set are distinct. It is not possible to transform one member of

a set into another member.

In a canonical form many of the elements of the matrices may be set to zeros or ones.
The remaining elements are then estimated. Canonical forms can likewise be defined for
linear systems where both input and output measurement roise are present. This leads to

the tnnovations concept of representing systems.
2.2. ldentification Methods.

The literature in the area of identification methods is extensive and it would be im-
possible to do justice to it in a brief report such as this. What is presented here is a
tutorial treatment of the methods, so that the reader may be able to put the material that
follows into proper perspective [14], [22]. No attempt will be made to cover all the meth-
ods available (e.g., methods such as quasilinearization and dynamic programming have not
even been touched upon). The aim of this exposition is to help the reader unfamiliar with
system identification to gain a coherent picture of the salient techniques of the methods

that are currently used in practice.
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Assume a set S of models

S = {S(6)|9 € Ds) (16),

where @ is the system parameter vector, together with measured data,

N = {2(1),2(2),~'~,Z(n)}r (17a)

where each z(t) represents an input-output pair y(t),u(t) at time t. The measurements

y(t) and u(t) are p and m dimensional vectors, where the measurements are defined as

vV = {v(1),¥(2),- -, ¥(n)}7 (175).

The identification procedure involves the selection of a proper member S(é) in the model

set. S that best ‘describes’ the data. Thus, the identification method reduces to determining

the mapping from zV to the set S.
N — S(8). (18)

2.2.1. Prediction and Equation Errors.

The various models described above are all ways of representing relationships between
signals that are input to a system and signals that record the response which the system
produces. They all have one common feature; they all provide a rule for computing the
next output or a prediction of the output from the given past observations. Thus, given

t--

the vector z'"! of observations, they provide the vector y(t), given the vector #. This

can be expressed as:
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The prediction equation above is always a deterministic relation. For example, when using
a stochastic state-space model, the prediction rule may be provided by the Kalman Filter.
This time-varying filter initiated at some time to, is driven by the data set z*~'. When
solved explicitly, it yields a function like the one described in (19). All the stochastic
assumptions involved in che modeling process (noise characteristics,etc.) only serve to

arrive at this deterministic predictor function.

Using the predictor equation, one can determine how good the prediction was by

computing the error

£(t,0) = y(t) - y(t,0). (20)

This quantity is also called the prediction error at time t, corresponding to the model
S(6). For a simulation model this error quantity is generally called the output error. The
prediction error is a random variable whose probability density function depends on the
value of vector . Generally, these errors are assumed to be independent for different ¢.

This assumption, together with (19), is often referred to as the probabilistic model.

One reasonable approach tc obtain the mapping (18) then would be: using z¥ and
(19) and (20), select the parameter vector 6 in such a way that the prediction errors,
é'(t,é), t =1,2,3,.--,N are as small as possible. The question of what is meant by

“smal]” must be based on the a priori information of the errors in the measurement process

and a priors knowledge of the system parameters.

Another error criterion often used in assessing the ability of a model to describe the
relationship between the measured signals and the predicted response is called the equation
error. It indicates the extent to which the measurements satisfy the model equations. For

the system of (14), for example, the equation error would be given by
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Eeq(t,8) = MZ +Di+ Kz — f(u(t)) (21)

where 1 and u correspond to measured quantities. It should be noted that determination
of this error quantity generally does not depend upon obtaining the response of the model
to the measured inputs. However, the estimates of the error may be heavily contaminated
by numerical noise when numerical differentiation is serformed on noise corrupted data.

In general, the parameter set & which is estimated using these two definitions of error

(output error and equation error) will be different.

The error £ delined above is a vector quantity, in general, and it is analytically useful
to introduce a scalar measure r(t,0,£(t,8)) to evaluate the magnitude of the prediction

error £(t,0). After having recorded data up to time NV, a natural criterion would be

N

R(9,z") = },\?Zr(tﬁ,f(t,ﬂ)).

=1

The determination of the functional form of r then establishes the error criterion that is

used.
2.2.2. Measurement Noise, A priori Information and Error Criterion.

Noise is defined as unwanted signal or disturbance. These unwanted signals can be
thought of as resulting from

e modeling the system incorrectly, and/or,

e modeling errors iu the experimental measurements of the input signals and the

measured responses of the system or in processing these measurements.

Contider, for instance, a system whose “correct” model is
i+ ky ey’ = [(2). (22)
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Had S been chosen to be the set of linear systems, then the modeling error would be ex-
pressed by the cubic term above. Note that even though the value of ¢ may be very small
compared to k, its effect on the system’s output could be profound in certain regimes of
response. On the other hand, for inputs of very small amplitude, the numerical value of
the modeling error could be very small. If, during an experiment, instead of measuring
the output y(t), the signal recorded was y(t) + n(t), then n(t) would be the output mea-
surement error. Both systematic (or bias) and random errors may occur in experimental
measurernent. Systematic and random errors are introduced by the physical apparatus
used in experimental testing and in data reduction, with random errors also associated

with environmental effects on the system.

While in concept measurement and modeling errors may be thought of as very different
types of errors, in practice the results of identification(estimates of #, say) are contam-
inated by both of these two types of errors in a2 manner which may be often impossible
to disentangle. This often adds considerable difficulties i.. .alidating the model which is

arrived at.

Since measurement errors are always present in an experimental situation, even in
the absence of modeling errors, the parameters that are determined will seldom result in
an exact match between the measured responses and the model responses. Thus an error
criterion is generally chosen and the parameters are obtained by minimizing this error
criterion to an acceptable degree. Also, since the experimental data ccllected is indeed
limited, rather than the true values of the parameters, one can only obtain estimates of
these parameters. Thus, the problem of the determinration of the parameters in a model
reduces to one of statistica! estimation. One would then ideally want the probability
density function (pdf.), p(d; N), where 8 is the parameter vector to be identified through
the use of ¥ data samples. One would intuitively expect that as the number of samples

N increases, the pdf. of § becomes more peaked around the true value, §. Due to the
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analytical difficulty of obtaining the entire pdf. of 8 and the difficulty in visualizing these
multidimensional pdfs., one resorts to using

e the expected value of 6 E[G]

o the bias of the estimate; E|f] - 6

o the covariance of the estimate; cov|d] = E[{§ — E|6]}{0 - E|6]}7]
It may be noted that if the distribution of § were a multivariate Gaussian distribution,

these parameters would define the pdf. completely.

The estimators § used for estimating the parameter, § € R?, depend on the a priors
information available about the measurement process, the error criterion chosen, and the
‘cost’, C(é|0), associated with choosing the value @ for the estimate when the true value is
¢ . Three different estimators will be discussed, each associated with a progressively smaller
amount of a priort information. The error criterion, the measurement and modeling errors,

and the a priort information interact with each other in a manner that is now discussed.

Bayesian Estimator: A priori knowledge required is:
o p(y"|0)
* p(6)
o C(0)9).
The conditional risk of choosing 5(y) if the true parameter 8 is given by the N -dimensional

integral

Fae{CU0I9)) = [ C@.00p(s™ )", (23)

The average risk taken over the pdf. of # then becomes the j-dimensional integral

R(I) = [ Clio)plols")as (24)

The Bayes's estimate # is such that,
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Nate that p(8ly™) = p(y™ 18)p(6)/p(y™).

A suitable error criterion for obtaining the estimates, 8, would then be the minimiza-
tion of the risk, R(6). The Bayesian estimator places the entire proklem in a probabilistic

framework. Note that it also places the true parameter vector 8 in a probabilistic context.

Maximum Likelihood Estimate: When only the first piece of information stated above
is available, the true parameter 8 can no longer be thought of as a random variable; it

simply becomes an unknown. A suitable strategy then would be to determine
(@) (26)
max p{fly )

This is equivalent to maximizing p(y" |}, which is generally referred to as the Likeli-
hood Function. Denoting the pdf. of the prediction error by f(t,8,£) and assuming that

the errors are independent in time, this can be shown to reduce to

N
R(0,y") = log{p(y™18)} = ) log f(t,8,£(t,9)). (27)

t=1

Thus, a suitable error criterion (note that the logarithm is a monotone function), R(8), for
obtaining the estimates is to minimize the negative of the log likelihood function. For this
choice of the error criterion the value of § so obtained is called the Maximum Likelihood
Estitnate (MLE). The MLE has some useful properties: asymptotic {large N) normality,
asymptotic unbiasedness and asy mptotic efficiency. Under various assumptions on the pdf.

f(t,0,&) various different MLE estimates can be found.

When f(t,0,¢) is assumed to be Gaussian, the error criterion reduces to:
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,r(i‘g.e) = —log f(t,o‘E)
(28a)
= Plog(ar) + SlogldetA(t,0)) + £ETA7 (1, 0)E

where the mean of the distribution of £(t,8) is assumed to be zero, the covariance to be

A(t,0) and where p is a unknown constant. When A is not a function of 8, the error

criterion becomes a quadratic function. The function 7(t,8,&) then becomes

Y

it

WY
LY

1 -

r(t,0,6) = =ETATIE, (28b) ,
: A
Consider, for simplicity, a single output system (i.e., p = 1). Let the vector y" be obtained -
A
from a model linear in the vector 4, i.e., ._:
\'

3
S0
&,

yN =Us. (29)

e e

gl 44
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When the measurements are contaminated by zero-mean gaussian noise, n(¢), with a

covariance E|nnT] = S the equation to maximize the log likelihood function (which is

now quadratic) is:

XX

2 - _ -

—={" - UOT|s|7 (" - Uh)} = 0. (30) :

a6 R

(Here the noise vector n is N -dimensional.) This yields the estimzte § 1. be ,
N
%
By = (UTS-' U} H{UTS 14N}, (31a) E
with =
(\-
e
;
cov|f) = [UTS~ )L, (31b) "
[ 4
This estimate (relation (31a)) is often called the Markov Estimate. Note that it depends ‘.‘:
L
linearly on the measurement data. The covariance of the estimaie depends on the number :2:
of data points and the output measurement noise covariance. It represents the confidence N
~
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which may be placed in the estimate that has been obtained and is a crucial piece of
information for the validation phase of the identification process. Relations (31a) and
(31b) may also be thought of as resulting from a weighted least-squares approach with the

weighting matrix taken to be the covariance of the measurements.

Least-Squares Estimator: If no knowledge of the measurement noise is available in
the example above, then it would perhaps be appropriate to choose S = ¢?]. Using this

in expressions (31) yields:

0 (UTU|" ' UYN (32)

and, A

Cov(8) = d*|UTU)"!. (33)

This is exactly the least-squares estimate to the measurement equation

vV =Ua+n, (34)

SRR 23 2 e e N E A

where n is the appropriately-defined measurement noise vector. Thus it is seen that the

various estimates obtained, as well as their covariances, depend on the a priori information

available. This a priori knowledge also affects the error criteria in the minimization process.

ey

TN

Though it has been shown that the Markov and Least-Squares Estimators follow

'.:‘n

from the MLE estimator when the distribution of ¢ is gaussian and independent of the -

a

few
»

parameter vector 8, these linear estimators can be derived under considerably more general

i conditions. (Of course, when the estimator is a MLE, the helpful asymptotic properties of

E
!
l
'
!
i
¢

the MLE apply.)
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Model Nonlinear in the Parameter Vector, 8: [n many problems that involve unknown
parameters, the measurements do not depend linearly on #. In such a situation one may
try to use an iterative approach based on the results obtained so far. At each iteration
the error € is lincarized around the best estimate of 8 from the previous iteration. The

method goes as follows.

E(t,6) = y(t) - Y(t,8) - WAG = e(t,8) - WA, (35)

where W is the sensitivity matrix defined by

aY;
W, = a8,

and e is evaluated from knowledge of the parameter # obtained from the previous iteration.

The unknown parameter to be updated at each iteration is then Af. Then

9"4.[ = 0,; + A0 (36)

If one is using the quadratic error criterion (e — A8)TS~!(e — Af) to be minimized, then
one again arrives at the same equations (again for a single output system, i.e. p = 1)
(31a) and (31b) for obtaining the estimates of A#. Thus, the adjustment Ad,,, at the

(+ + 1)th iteration is given by

Al = WTSs™w - twTs-1eN, (37)

The success of the technique described above depends heavily on the initial guess of the
paraineter vector, g, for the first iteration. The method is known to diverge in many
instances. Another drawback of the technique is that it requires the sensitivity of the

measurements with respect to the parameter vector to be determined for t =1,2,--- N,
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2.2.3. General Numerical Procedures.

The minimization of the error criterion, R, may in general be thought of as an iterative

-process, where the estimate of @ at the (i+1)th iterate takes the form

fivr = 6 — uTT Re (2", 40) (38)

where I‘:' is called the gain factor and Ry is the gradient of the error criterion {23] with
respect to the parameter vector §. These quantities of course depend on the amount of
data available (value of N). The gradient direction is often modified by the matrix T\.
The scaling parameter u is generally chosen to facilitate convergence. Typical choices for

I', are:

o ' =1 (simple gradient algorithm) (39a)
e I' = {Tr[Ro,o(ZN,ég)]I} (normalized gradient) (3906)
oI, = {Ra,o(zN,é,-)} (Newton’s method) (39¢)

N
1 . -
T, =—§ &(t,0,)A 1 0(t,8));
* Nl (t,6:) (t,6.) (39d)

®=—¢4(t,0) (Gauss-Newton for {28a))

Here the subscripts on R represent differentiation with respect to the subscripted param-
eters. The iterations are stopped when the criterion R is smaller than a certain value.
It should be noted that the Markov estimators and the Least-Squares estimators of the

previous section can be put in this framework. Covariance estimates of the parameter 8
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. can likewise be obtained in a relatively straightforward manner. They provide information

on the confidence which may be placed in the model.

Recursive Methods: A situation that one can visualize in the estimation process ap-
plied to large space structures is that the estimates may be required on-line. This may be
required perhaps for some on-line decisions regarding control of the system. Alternately,
the limited onboard computing facilities available may make the minimization of R using
the relation (38) for each N infeasible due to the large amount of computation that may be
required. In such cases a recursive technique may be used to approximate (38). Different
recursive schemes (24|, {25], resulting in different statistics of the estimates obtained, can

be used. One such simple . \¢me would be to approximate §(N) as

8(N) = 8(N — 1) - u(N)[T(N)] 'Ry (N - 1), 2¥). (40)

Assuming that (N — 1) minimizes R(6, zV),

RY[G(N - 1),2"] = —-]%Q[N,é(N —1)JATEN,G(N - 1)), (41)

where ¢ has been defined in (39).

The values of £(N,8) and ®(N,d) are generally found by a recursive rule starting
from t = 0 and they depend on the nature of the error criterion used. These recursive
relations are used, then, and the estimate of the parameter, é, at time t, is employed

whenever these recursive relations require the value of 8 at time t. Using the last of the

relations in (39) leads to a recursive scheme such as

§(N) = §(N — 1) + -"ﬁ[r(N);-lé(N)A-lz(N,é) (42)

along with
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D(N) =T(N -1) + —IIV{Q(N)A“‘QT(N) ~T(N - 1)}. (43)

Such schemes bear a close relation to Markov Estimators as well as to Stochastic

Convergence Methods. Note that the update is linearly dependent on the prediction error,

€. Recursive schemes for Least-Squares Estimation can be obtained in a straightforward

-

manner by modifying the corresponding expressions (like (31) and (33)) in a suitable ) \&5
oIy
manner. 3

5

Another way of approaching recursive estimation is through the use of the Kalman

Filter (20|. This filter (as originally conceived) provides a recursive relation for the esti- ;}?E
mation of the state of a linear system. The estimate is linear in the observations. The ;\
problem can be thought of as a Bayesian updating of the state vector of a linear system ..';
when both measurement noise and input noise may be present. Under the assumption that :E‘_:
the noise is Gaussian, the filter is optimal in the Least- Squares sense. Under other noise :i_!.
conditions it is the optimal-linear filter. Formulations of the Kalman Filter, when applied [:1
to the estimation of an “augmented state vector” which includes the parameter vector 4 .*3

> g

(along with its augmented state equation, § = 0), generally lead to what is called the

Extended Kalman Filter, for now the equations for this augmented state vector become

. \

nonlinear (22}, [25]. A procedure of successive linearization around the new estimate of the -
N

. . . !

augmented state vector may then be carried out. The estimates are obtained, after each v;

such linearization, through the usual Kalman Filter equations. The nonlinear nature of this

Q iy

Ll =l o

problem implies that all approaches to obtaining the estimates will be inherently iterative.

- .:-’_“f )

JI

A 1y RN

Recursive formulations based on suitable Gaussian assumptions regarding the statistics of
the state and the measurement vectors (also called the pseudo Gaussian approach) can

also be used for obtaining the conditional means of the state vectors. Minimization of var-

ious error criteria (depending on whether one is using MLE, Least- Squares, etc.), under vl




the constraints imposed by these recursive relations, can then be carried out by gradient

search techniques.
2.3. Experimental Testing.

The identification process depends rather heavily on the nature of the experiment(s)
done to characterize the physical system. This is perhaps the aspect of structural system
identification that is most infiluenced by some of the macro-level considerations such as
costs, available time, mission goals, and so forth. Among the experimental conditions
available for adjustment are:

e the boundary conditions of the system, [26]

¢ the locations at which the measurements are to be taken and the inputs provided

27), (28

e the times at which the samples are to be obtained [29]

¢ the extent and nature of filtering of data prior to sampling

¢ the nature of the input signals (e.g., sine wave tests, GWN, chirp signals)

o the types of sensors and actuators to be used.
Each of these considerations will affect the amount of information that is gathered in the
experimental testing of the system. Experimental design obviously depends on:

¢ the goal of the experiment and the intended application of the results

¢ the class of models, S, to be used

s the identification method to be used

¢ the extent of prior knowledge about the system

e the constraints on the operation of the system.
For on-board identification of large space structures, the last point appears to have consid-

erable significance. The testing technique must not render the structure inoperable over

considerable periods of time.
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SECTION 3. STRUCTURAL MODELING
AND EXPERIMENTAL CONSIDERATIONS.

Structural modeling is a key part of structural system identification for large space
structures. As discussed in Section 1.3.1, the model must not only represent the physical
system, but must also be coordinated with testing, model verification procedures, and
estimation algorithms. Section 1.3.2 discussed system identification from a model develop-
ment point of view, where the first stage of development is the formulation of an analytical
model, the second stage involves the refinement and verification of the model, and the final

stage addresses certification.

The key modeling issues for model verification and certification are:

(1) Coordinate reduction aimed at achieving low-order plant models for control systems.

(2) Parameter definition aimed at minimizing the number of parameters which must be
estimated, and optimizing the correspondence between parameters and physical mea-
surements,

(3) Substructuring to facilitate the verification of large models by partitioning,

(4) The treatment of nonlinearities, and

(5) The quantification of modeling uncertainty for purposes of assessing predictability,

and implementing stochastic control.

Of the two types of models previously mentioned (parametric and non-parametric), max-
imum use will be made of parametric models for large space structures; nonparametric
models may be used in special cases where conventional modeling techniques are not suit-
able. Parametric models may be divided into two classes ~ discrete and continuous. The
former is characterized by ordinary differential equations, the latter by partial differential
or difference equations. While some research is being conducted in the use of continuous

models, discrete models based on finite element methods are used in practice because of
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“their general applicability and availability. These methods are implemented in a number

of commercially available computer programs such as NASTRAN, ANSYS and EAL.

Equivalent continuum models have been suggested as a means of simplifying the mod-
eling of space structures which are very large in terms of the number of siructural elements
they comprise, but simple in terms of overall structural configuration and its repetitive
pattern of assembly. Typical examples include uniform truss-type beam and truss-type
plate or shell assemblies. Equivalent continuum models are so named because they re-
place complex structural frameworks with continua which are equivalent in some sense,
e.g. stress-strain relationships, or kinetic and strain energy. These equivalent continuum
models can be discretized for use in conventional matrix structural analysis based on or-
dinary differential equations. As with actual continuum models, the discretization can be
accomplished in either of two ways: with discrete (nodal) coordinates and (equivalent)
finite element modeling, or with distributed (modal) coordinates. The nodal coordinate
approach should produce results which are similar, if not identical, to results based on su-
perelement modeling, where coordinate reduction and the repetitive pattern of structural
assembly are both utilized. The modal coordinate approach is capable of achieving greater
accuracy, to the extent that closed form solutions are available for defining the generalized

(modal) displacement functions.

Although the equations of motion which govern the dynamic behavior of large space
structures in orbit contain inherent nonlinearities due to large rotations, large deformation,
nonrigid joints, etc., it is anticipated that for purposes of structural identification, the
equations of motion will be cast in linear form. This can be accomplished in a number
of ways including linearization, isolation of local nonlinearities, and the replacement of

nonlinearities by time-dependent coefficients or parameters.
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Substructuring will undocbtedly be employed to model hinged structures with large
relative rotations (e.g. solar arrays and antennae) and other structural configurations
where major structural assemblies are joined at simple interfaces. Substructuring may
also be used to isolate nonlinearities. Substructuring is particularly attractive for struc-
tural identification because it allows the identification to be focussed on smaller objects,
thereby improving the resolution of the process. Substructuring facilitates coordinate re-

duction, which is essential for producing the low-order models required by control systems.

AL RSB A IS PRSI LR AT g Y

Coordinate reduction will be just as essential for purposes of structural identification. In
this case, the need is for fewer parameters; the number of dynamic degrees of freedom is

less critical.

These topics are discussed in the subsections which follow. The intent. is not to offer

a complete survey of each topic, but rather to reveal their salient [eatures as they relate to

o N Y
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the identification of large space structures, and to cite references in the published literature

R A
.. »

to avail the reader of sufficient background material for a deeper understanding.
3.1. Finite Element Modeling and Coordinate Reduction.

Coordinate reduction is usually accomplished in several stages as a model is developed

b ronsenpms

from the most fundamental finite elements, to superelements or ..ac;oelements, to sub-

assemblies, to major structural assemblies and finally to the complete structural system.

AN A

% T

All of these coordinate reductions have the potential of introducing modeling error. In
fact, the initial discretization of a continuous model to a finite element model implies a
coordinate reduction from the continuous system, having (theoretically) an infinite num-
ber of degrees of freedom per element, to a finite number associated with the selected

generalized coordinates or shape functions built into the particular elements (beam ele-

PEE BT SAY

ments, plate elements, shell elements, solid elements, etc.). The degree of error resulting

from this discretization process depends on the mesh geometry and how well it matches
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~-the geometry of the structure, the coarseness of the mesh, the type and number of shape

functions used, etc. It is virtually impossible to assess the magnitude of error introduced

by this process except by comparison with alternative solutions,

Having generated the initial finite element model of a structural component using
one of the standard finite element modeling programs, the second stage of coordinate
reduction, called static reduction or static condensation, is applied. Equations of motion

are first partitioned (neglecting damping for the time being):

My 0] | £ +rKu Kz | | z) :[fl (44)
0 0f|%: [Kn Kan||z:| " |0}
In partitioning the equations, two assumptions are made: (1) that there are no exter-

nal forces applied at the coordinates, r;, and (2) that the mass associated with these

coordinates can be neglected. It then follows that z2 can be expressed in terms of z, as

z3 = -K33'Knz (45)

so that the equations of motion reduce to
Mz, + (K - KoK Koz = fi. (46)

At this peoint, a number of similarly reduced components (in this case superelements,

macroelements, etc.) may be assembled into a structural subagsemb!y whose equations of
motion are again partitioned
1 1)y r=(1 1 1 )
[M’::; M‘:?)] [’2‘:1] + [Kiii K%(%;] [f‘:i] - {17, (47)
My’ Mg 13 K" Ky Zy | o
The partitioning is defined in accordance with the divigion of z(}) into subsets x‘il) and

zg” where no external forces are applied at the coordinates zgl). However, in this case
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M,(;) ; (1) and M“) arenot null. A third stage of coordinate reduction, known as Guyan
reduction {30}, is applicable in this case. Guyan reduction employs the same transformation
of coordinates as static reduction, except that it is applied to the mass matrix as well as

the stiffnéss matrix. In the case of (47), the transformation is

1
(2] = [Cimgiosy ] B2 e
Equation (48) defines a set of static shape functions for zgl) in the sense that a static
deformation involving the vector of displacements :c( ) is obtained for each vector, :c(,’) ,
defined by individually setting each element of ’5(1 ) to unity while constraining all other
elements of :r:(l ) to zero. The independent coordinates, J:S ), of (48) may be thought of
as generalized static displacement coordinates. In this sense, Guyan reduction may bé

interpreted as the consistent mass matrix [31] equivalent of static reduction. Application

of the transformation in (48) to (47) gives
(M0 - MBI KD — (KD KD) T (g - MY k)] 2

+ [ - KGR 2 = g0, (49)

The use of Guyan reduction requires some insight in deciding how to partition z(1);
modeling errors are minimized by a judicious choice of :r( ) where, for example, most of the

mass is associated with the x& ) coordinates. In this case, Guyan reduction approaches that

of static reduction. Clearly, the modeling error introduced by the static shape functions
implied in (45) and (48) increases with increasing mode number. Misapplication of Guyan
reduction can lead to serious modeling 2rrors, e.g. when one attempts to reduce the number

of coordinates too far. Intuitively, the degree of permissible reduction varies inversely with
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. the desired bandwidth of the model. The consistent mass matrix interpretation of Guyan

reduction offers useful insight for the partitioning of coordinates.

The model building approach is advanced another step by coupling together a number
of subassemblies, each represented by equations in the form of (49). For future reference,

these coupled equations may be written

M 3(2) 4 g(2),(2) - f(’)_ (50)

These would be the equations of a major assembly. Further Guyan reduction may be
applied at this stage, in which case (50) would be partioned as
2 3 - (2) 2 2 2
s el )+ [ M) [F]- [ e
M3iw My z3 K3 Kz I2 0
The reduced equations would be of a form analogous to (49) with the superscripts (1) in

(49) replaced by superscripts (2).
3.2. Distributed Finite Element Parameters.

The matrices M‘?) and K (?) of (50) will have lost physical significance as a result of
the various coordinate reductions, and will certainly be too large in dimension (perhaps
several hundred) to attempt the estimation of individual matrix elements. Experience has
shown, that in order for parameter estimation to be successful, five conditions should be
satisfied:

(1) The number of parameters being estimated should be small.
(2) The parameters being estimated should be distributed over the structure in such a way
that small changes in the parameter values (e.g. less than 10 %) cause a measurable

change in the structural behavior being observed (analogous to controllability).
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; {3) The measurements of structural behavior should be sufficiently complete to identify

the parameters being estimated (analogous to observability).

(4) The parameters being estimated should be representative of the differences between
the analytical model and the actual structure, i.e. must span the parameter space
required to bring the model into agreement with experimental data.

(5) The changes to elements of the stiffness matrix should not imply nonexistent load

paths in the structure, i. e., structural connectivity should be maintained.

The meaning of “small” in item (1) will depend on the estimation algorithm being used,
and on the particular application. For example, with one form of Bayesian estimation (32]
numerical illconditioning was encountered when the number of parameters exceeded 30,
whereas successful runs were made with 10-20 parameters. Using an alternative formu-
lation of the Bayesian estimator [33], 100 parameters were estitnated with no apparent
illconditioning. This is not meant to imply that one formulation is superior to the other
in all cases. The number of parameters being estimated is only one of many factors to be

considered when selecting an estimation algorithm.

As pointed out in [34], it is futile to attempt to independently estimate the individual
finite element parameters of a typical finite eiement model. Not only would there be
too many of them, (> 100), but the global structural behavior normally observed in the
lower modes (or lower range of frequency response) of a structure is insensitive to even
large changes in individual parameters. For example, the stiffness of a single shell element
in a typical finite element model of a cylindrical shell might be changed by an order of
magnitude with no significant effect on the lower modes. To be effective, the parameters

defined for purposes of parameter estimation must be distributed in some fashion over a

sufficiently large portion of the structure.
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There are many ways to define distributed parameters. Dobbs and Nelson (35| have
used parameter linking, a technique frequently used in structural optimization, whereby
a parameter (such as thickness) common to a number of finite elements in a region, is
chosen for estimation. Changes to the parameter are made uniformly to all of the elements
which have this parameter in common. An example of parameter linking, in the case of
a planar truss-beam, would be to link all longitudinal elements, all transverse elements,
and all diagonal elements, resulting in only three stiffiness parameters to be estimated. In
general, parameter linking allows the estimation of parameters which appear nonlinearly

in the mass or stiffness matrices, e.g. plate thickness.

Another way to define distributed parameters is by submatrix scaling, where the mass

and/or stiffness matrix are first expanded into a linear series (sum) of submatrices

M=Mo+) oM (52a)
;

K = Ko+ ) _BiK, (52b)
j

where a; and f; are scalar coefficients. Initially, a; and g, may be assigned values of
unity, so that the initia! values of M and K are given by the simple superposition of all
submatrices. Since the finite element matrix assembly process utilizes superposition as a
means of generating the mass and stiffness matrices, it should be easy to generate the M,

and K, in the process of generating M and K.

Sometimes one is given M and K with no opportunity to repeat the modeling process
for purposes of generating M; and K,. One way to generate meaningful submatrices given

this situation is to generate a set of orthogonal vectors, 4, , such that

617'M6k = : I#k (53a)
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§TKé =0 :  j#k (53b)

'l'heﬁuﬂ
M; = L (Mé6;6] M) (54a)
2
K, = — (K&6TK) (54b)
K,
where

M; =6TMé; and K; =6 Ké;.

Choosing 6, from the set of undamped normal modes is one possibility. It is also possible
to generate static deformation functions which are mutually orthogonal, as was done by

Lee and Hasselman (36].

A third type of distributed parameter, used successfully in practical applications of
parameter estimation (32|, [36], is the modal matrix element. Continuing with the alter-
nating sequence of substructure assembly and coordinate reduction described in Section
3.1, one may apply a modal transformation to (50) or to a reduced version of (50) obtained
by applying Guyan reduction to the partitioned (51). Suppose the modal transformation

is given by

() =244 (55)

where °¢ is a truncated modal matrix consisting of the analytical modes corresponding to
M®) and K(3) and g is the reduced set of modal coordinates. The transformed equations

are written in the form
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"md + kg = fy = 97

where

‘m="¢"MP°¢=1 (diag)

%k = °¢TK(M°p = °w?  (diag).

The “true” equations of motion (including damping) may be written as

I+ &1 +win = f,.

Equations (56) and (58) are related by

9=1n
J=¢Tmy
wz = T ky

where

m="m+Am=1+Am

k =%k + Ak = °w? + Ak

(56)

(57a)

(576)

(58)

(59)

(60a)

(60b)

(61a)

(618)

and £ is the modal damping matrix, as yet undefined. The object of parameter estimation

would then be {0 estimate Am, Ak and £.
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A physical interpretation of Am and Ak follows from perturbation analysis. If the
true modes ¢ can be expressed as linear combinations of the original analytical modes °¢,

then

¢ = oy (62)

The cross orthogonality product of analytical modes and true modes is then

L] O¢TM(2)¢ — O¢TM(2)°¢¢ = w. (63)

By linear perturbation analysis it can be shown that

. .
p oa BB SV Y ol LR St |

Am=(I-¢9)+ ([ -¢)T (64a)

e

Ak = (w; = °w) + °Wi(I =) + (I - $)T°w} (64b)

where [ is the identity matrix and both w? and °w? are diagonal matrices. Thus Am and
Ak are defined in terms of the difference between the true eigenvalues and those given by
the analytical model, and the cross orthogonality between the true eigenvectors and those

of the analytical model, assuming small differences between the two.

The estimation of Am and Ak, and thereby m and k according to (61), allows w,

and ¢ to be obtained by numerical solution of the eigenproblem:

(k -wim)y =o. (65)

The revised modal matrix in physical coordinates is then obtained by the transformation,

¢ = ¢y, (62).




It is recognized that estimates of Am and Ak may be obtained directly from (64)
whenever experimental es.imates of ¢ and w, are available. This approach was attempted
by Garba and Wada [37] and also by Lee and Hasselman [36] with generally unsatisfactory
results. The solution of (65) with Am and Ak obtained in this manner yielded improved
frequencies, but the corresponding mode shapes were in some cases worse than those of the
original model. The degradation of mode shapes may be due to “noise” in the measured
mode shapes. Estimation of m and k by (64) using ¢ computed from (63) involves taking
small differences of relatively large numbers in (63), making the estimates sensitive to
noise. Thus, while (64) offers an insightful interpretation of Am and Ak, it should not be
used as a means of estimating these parameters for purposes of improving the analytical
model. On the other hand, they may be used as a basis for evaluating combined modeling

and measurement accuracy, as discussed in Section 3.6.
3.3. Equivalent Continuum Modeling.

There are two distinct features in large space structures, i.e., the presence of a large
number of structural members and periodic geometries. When full-scale finite elements are
used to model this type of structure, the periodic nature of the structure is sometimes not
iutilized; moreover, the size of the structure can often lead to an expensive computational

effort which yields limited information about its dynamic characteristics.

From the practical control engineering and system identification viewpoint, it is the
global behavior of large space structures which is if most interest. The need for a model
that is capable of describing the global response without detailed deformation in each

member is then obvious. The continuum modeling of large periodic structures appears to

have provided an answer to this need.
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Continuum models employ basically a smearing approach that turns an actually dis-
crete structure into an effective continuous body. In such a transformation, effective prop-
erties are obtained and then used to describe the structure. These effective properties
may involve a smaller number of cffective material and structural parameters than that
' of the actual structure. The identification problem can then be reduced to identifying the

effective properties.

There are three methods which may be employed to construct continuum models for

large truss or frame structures. A brief account of these methods is given below. .

a. Effective Modulus Method

A typical cell of the structure is isolated and studied for its load- deflection character-
istics, which are subsequently compared with the stress- strain relations of a continuum.

From this comparison the effective moduli are obtained.

Heki and Saka [38] used this method to analyze lattice plates which were effectively

“CHENY XF4 IV BTV YE T A
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A

represented by anisotropic continuum plates. Nayfeh and Hefzy [39], [40] considered both

v

A

truss-like and frame-like structures. The procedures employed by Nayfeh and Hefzy are

lll

summarized as follows. First, all sets of parallel members in the typical cell are identified.
The unidirectional effective continuum properties are derived for each of these sets. Finally,
crthogonal transformations are used to determine the contribution of each set to the global

effective continuum properties of the st.ucture. The resulting effective continua are vsually

%
E

anisotropic. If the structure possesses symmetries, then the number of effective moduli is

reduced.

The effective modulus method transforms a discrete structure into a 2-D or 3-D solid.

For beam-like or plate-like structures, the effective beam or plate equations of motion can

be derived following the conventional approach available in continuum mechanics.
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- b. Energy Method

The essence of this method is to construct a continuum that contains the same amount
of strain energy and kinetic energy stored in a typical cell of the structure. Sun and Yang
(41] derived a 2-D continuum with couple stress to represent an orthogonal gridwork with
rigid joints. In [41] the equations of motion were derived using Hamilton’s principle on the
“smoothed” strain and kinetic energy functions. The stress-strain relations were obtained

directly from the strain energy functions.

Noor et al [42] derived effective stiffnesses for beam- and plate-like truss structures
using the energy-equivalence concept. The procedures involved using an approximate
continuous displacement (or strain) field commonly used in continuum mechanics for de-
veloping beamn and plate equations to estimate the strain energy and kinetic energy in a
typical cell. Later, the same method was employed to study structures with rigid joints

for which the representative continuum possesses coupled stresses {43, [44].

c. Direct Structural Method

Many large space structures, although complex in detail, often behave grossly as a
beam, plate or a thin sheil. The gross dynamic behavior of these structures may be
governed by the proper continuum beam, plate or shell equations. If such equations are

derived, the original discrete structure may be replaced by the equivalent model.

In using the direct structural method, a continuum model must be chosen a prior:.
A typical cell is then analyzed using conventional methods (analytical or the finite ele- '
ment method) for loading that produces the basic deformations in the continuum model.
The continuum beam or plate properties are obtained from these basic load-deformation

relations for the typical cell.
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Sun et al [45] presented the procedures of the direct structural method for beam-

like and plate-like truss and frame structures which are symmetrically constructed with
respect to their mid-planes. It was found that Timoshenko- type beam and Mindlin-
ty pe plate theories were most suitable for continuum modeling. Later, Sun and Kimn [46]
extended this method to include truss structures which were not symmetric with respect
to their mid-planes. Material damping of structural members can be easily included in
the formulation {47]. For simple geometries of the typical cell, explicit expressiors of the

effective continuum properties can be obtained [48].

Once the continuum model is established, the analysis follows the classical methods
for solving Timoshenko beam and Mindlin-type plate equations, which are abundant in the
literature. In fact, Abrate and Sun (19| studied large amplitude vibration of truss beams

using the continuum model with excellent results.
3.3.1. Extended Timoshenko Beam.

The conventional Timoshenko beam theory was developed using homogenous isotropic
materials in which the three basic deformations, i.e., extension, transverse shear and bend-
ing, are not coupled. A more general beam theory is needed to model an arbitrary truss
beam in which the three basic deformations may be coupled. The force-deformation rela-

tions which account for these coupling effects are given by

N EA ny2 ma o %%
Q|l=|mas GA na e + (66)
M ma n2s EI %‘f

where
N = extensional force
Q = transverse shear force

M = bending moment

T A,
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-~~~ -4 = longitudinal displacement of the mid-plane
w = transverse displacement of the mid-plane
¥ = rotation of cross-section

EA = longitudinal rigidity
GA = transverse shear rigidity
E1 = bending rigidity

niy = coupling coefficients

The stress-strain relations were obtained directly from the strain energy functions.

The corresponding equations of motions are

oN

—é::- +qr=mzx+ R¢ (670)
aQ .
37 Fa=mu (67b)
oM . -
—a-;—Q—Ru-O-pI!/J (67¢)

in which

gc = externally applied force per unit length in the longitudinal direction
¢: = transverse load per unit length

m = mass per unit length

pI = mass moment of inertia of cross-gection

where k is the thickness of the beam.

The sign convention is illustrated in Figure 3.
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Figure 3. Timoshenko Beam Element.

Substitution of (44) into (45) yields the displacement equations of motion:

a:(EAa:) a:(nﬂax) az("l? + '7!36:) Y
ax('].\?az) az(GAaz) a:(GA+ ']2388) w
-1120; + 3:('7133z) -GAd; + a:("naz) -GAOd: + az(EIaz) ¥

m 0O R i gz
=0 m ol]w|-1q. (68)
R 0 oIl |y 0

where J; is the partial differential operator with respect to z, and a dot over the variable

indicates differentiation with respect to time.
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3.3.2. Effective Beam Properties.

For a beam-like tl.'uss possessing a plane of symmetry coinciding with its midplane,
the coupling coefficients 7n,, vanish and the three basic beam deformations are uncoupled,
leaving three stiffness coefficients, EA, GA and EI to be determined. In this case,
these stiffness coefficients can be obtained by isolating a typical substructure and studying
its force- deformation behavior in each type of deformation. Trusses of this type were

considered by Sun et al {46].

If coupling coefficients n,, are present, it is more convenient to use the inverse relation

of {66), i.e.,
' N
Lryl=]|Q ((69)
%.‘f M
where
[n*] = [n]™" (70)

and [n] is the 3x3 beam stiffness matrix in (66). The elements 7., can be evaluated
column by column by applying unit loads for N, Q and M, respectively, to the typical
substructure. For instance, by applying N = 1, Q = M = 0, the resulting values of
Ou/0z, dw/dz + ¢, and IY/Iz are equal in value to n;,, n;, and n;,, respectively.
The other elements n;, can be obtained in a similar manner. The elements in (5] are
thep obtained by inverting [*]. Note that if a truss member is shared by two adjacent

substructures, the cross-sectional area of this member should be reduced by half.

In the abcve procedure, care must be exercised in interpreting the beam deformations
O0u/dz, dw/dr+ ¢ and 3y /dz. Figure 4 depicts the deformations of a unit cell of a truss-

bean resulting from applica‘ions of shear force @, moment M, and extensional force V.
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Figure 4. Extension-Shear-Bending Coupied Deformation.
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" Consider the case shown in Figure 4c. Due to a unit extensional force apolied to the unit

cell, the resulting extension is §u, the rotation at the left end is é¢'; and at the right end

-is g and the vertical displacements of the midplane at the left and right ends are éw,

and dwp (not shown in the figure), respectively. From this deformed geometry, we obtain

nyy =0u/8z =~ 6u/L, (T1a)
Mg = 0w/3z +¢ = (6wr — fwr)/Lc + (§¥r + 6uL)/2 (718)
Na = 0Y/0z = (6Yr — 6yL)/Le. (Tic)

To obtain and n3,, 7134, and 133, a unit moment is applied as shown in Figure 4b.

The application of the transverse shear force .5 ..wie tric.,  .Jue to the finite dimension
of the substructure under consideration, the unit hear force applied at the right end would
produce a couple at the left end. Thus, a pair of forces of 0.5L./L, as shown in Figure 4a
needs to be added in order to produce « state of shear stress in a continuum. If L, — 0,
then these forces vanish as expected. This pair of horizontal forces correspond to the
thickness-sh.ear stress in the continuum theory and should not be confused with the beam

bending moment.

It is important to note that the effective stiffnesses £A4, GA and EI should be
regarded as single entities rather than the product of two constants. The mass inertia terms
for the continuum beam, m, R and p/, are calculated from the typical substructure by
calculating the ‘otal inertias of the whole substructure first and then distributed uniformly
along thc beam elemem. For spatial “earn-like trusses, the Timoshenko beam model can

be easily extended to inciude torsion and bi-directional bending.
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Example 1. A typical substructure of the example truss shown in Figure 5 exhibits

extension-bending coupling. By following the above procedures, the equivalent centinuum

7 beam properties are obtained and given as follows.

AC,
E=71.7x10° [N'm7
Ad Ac, =80x10-* [m7]
1 Ag=60x10-* [m?)
2 Ag & AQ Ly p= 2768 [kg‘m’]
A5 Ac, = 180x10-¢ [m?)
Ad =40x10-¢ {In?)
Ac,
}: 75m >

Figure 5. Typical Substructure of a Truss.

2.13 x 107 0 -1.79 x 107
[n] = 0 1.47 x,10° 0
-1.79 x 107 0 1.17 x 108
pA = 1.09kg/m
R = -0.68kg
pl = 5.28kg-m

Equations for the mass and stiffness properties are given in Section 3.3.4. along with

equivalent properties.
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- 3.3.3. Loads in Truss Members.

For structural design purposes, loads carried by truss members may be needed. The

member load in the actual truss can be obtained from the continuum model solution.

.

The solution for a Timoshenko beam is given in terms of the longitudinal displacement
u(z), the transverse displacement w(z), both in the mid- plane of the beam, and the
rotation of the cross-section, y(z). The displacement at any joint of the truss can be

calculated from the following relations
u’(z,2) = u(z) + 29(z) . {72a)

w'(z,z) = w(z) (726)

where the coordinates of the joint (r,z) must be specified.

ﬁz

> X

Figure 6. nternal Loads in a 8s Bar.
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For a truss bar joining i-joint end j-joint (see Figure 6), the load in the bar is given

by

Sy = —{(u; —u]) cos@ + (w; — w;) sin8} (73)

where A is the cross-sectional area of the bar, E is Young’s modulus, and L is the length.
The quantity AE here should not be confused with the extensional stifiness EA of the

effective stiffness of the continuum Timoshenko beam modei.

3.3.4. Continuum Modeling with Damping.

Damping may add to the dynamic stability of large space structures. In the space envi-
roniment where air damping is absent, the major source of damping derives from structural
deformation, i.e. deformation of structural members and relative movements of joints. If
the joints are designed rigid, then material damping may provide the sole source of struc-
tural damping in the system. (Fuel sloshing and other “non-structural” forms of damping

are neglected here.)

If the stress-strain relation including damping for a truss bar member is known, then
the continuum model with a gross damping effect can be derived by the direct structural
method as described previously. Abrate and Sun [50] have considered viscous damping in

a symmetric truss beam.

For illustrative purposes, consider viscous damping for which the stress- strain relation

in a bar is uniaxial and is given by

o = Ee + dé (74)
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Figure 7. A Typical Truss Cell.

where o is the uniaxial normal stress, E is the Young’s modulus, d is the viscous damping

coefficient, and ¢ is the uniaxial strain.

Consider a symmetric truss with a typical substructure as shown in Figure 7. For

simplicity assume

Ay = A, Az = Ay, A = Ag (75a)
E, = E,, E; = E,, Es = Eg (75b)
dy = dj, dz = dg, dg = dg. (75¢)

Note that in symmetric trusses, the extensional deformation is uncoupled from the flexural
. deformation. Using the direct atructural method, the strains in the members of the sub-

structure can be related to the global bending dy//dz, and the transverse shear dw/dz + ¢

ST S—r e e A YRR & i 2 TV NV T G A S R BSOS L

by

(78)
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.. .where subscript 1 indicates member 1, and the coefficients a; and b, are obtained from

the properties of the substructure. If the contraction in the depth direction is neglected,

then a, and b; can be obtained explicitly as

a; = —ay = L,/2, G3 = Q¢ =ag =Gg = (77a)

b3 = -bg = Lch/(L: + L:), by =by =b5 = bg =0. (77‘))

The strain rates in the members are given by

€ a; b,
é2 az| 3¢y (b2} dv .

_ oy ow , 78
) lant ] ( 3+ ¥) (78)
ée a¢ be

Using (74), (76) and (78), the elastic force and damping force for each member can

be calculated, and subsequently the global resultant forces and moments. Then

Q] _[c4 0][ow/oz+y]_ [Cu 0 3w /dz + ¥ (79)
M|T|o EI|| ayez 0 Cs|| ov/az v
where
212 L. Az Ej
=gt 80
N B I o
1
ElI= 51,3 A, E, (80b)
2L Az d
g 33 (81a)

72 = (Lg " LZ)a/Z
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L} Ay d,. (81b)

o 1 -

Caz =

The equivalent mass properties of the structure are obtained by simply computing the

corresponding properties of the substructure and dividing by the length. The equations

for the mass and pl are

m:p[As Lc+2A, L.+2A; La]/Lc (82a)
L% L% L}
pl = p|As LG(—IE)+2A1 Lc(—2—)+2A3 La(ﬁ)]/Lc. (826)

Differentiation of (79) and substitution into the last equation of (67), gives the following

equations of motion:

AGA(RE +4)]  dCn(5E+¥) _ .
oz + 32 = mw — ¢;. (83a)
J(EILL) dw 8(C33 L) b o
7 9= _ utind R s A A ot = ,
32 GA(az +¢) + P ng(az + ) = Ru + ply. (83b)

This continuum model including damping was studied in {47] and |50] for free vibration as

well as forced vibration. Excellent results were found.

3.4. Substructuring.

Substructuring is a term associated with the practice of modeling a structure by assem-
bling models of substructures from its component parts. These substructures are analyzed
and assembleu into the total structure. There are various reasons for substructuring, and

various types of substructure models. In the case of large space strucutures, the reasons

for substructuring include:

ARARAT:
""s—‘-‘\. 4'; ".'_"'_ ;

27 T

b
Yata"d

s
v

W A
.n."._'
'

RO

Y

£ o
F)

5

20

v
J‘-;

A‘!'e

ki
2%

-'.7
4y O

g -."‘r-s‘

[\

N




- A multiplicity of particular substructures like solar arrays, habitation moduley, etc.
o Model verification advantages - model verification improves as smaller portions of the
structure can be tested individually. However, the structure should be designed to
= minimize the redundancy of load paths at substructure interfaces because these load
paths must be verified as well as the substructures themselves.
¢ Coordinate reduction - although modern digital computers and software have all but
eliminated the restrictions on model size which initially gave impetus to substructuring
twenty years ago, coordinate reduction is still an important consideration in model
veriﬁc#tion. When fewer generalized coordinates are required to define the state of a
system, fewer structural paran.cters must be verified experimentally.
¢ The isolation of nonlinearities ~ substructuring may be employed to isolate certain
types of nonlinearities, such as those due to large rotation, nonlinear hinge mecha-
nisms, and hinge lock- up representing a change in boundary conditions. In this way,
linear models may be employed for the substructures themselves, while the nonlinear
models are confined to substructure interfaces.
¢ Contract responsibility ~ substructuring permits individual contractors to be held

responsible not only for the modeling ¢f components they build, but also for their

verification.

Various types of substructure models serve different needs. Some of the models ap-

’-_

propriate for large space structures include the following:

v

fo gl 2

¢ Conventicnal finite element models (FEM) or lumped parameter models (LPM), also

L]
L sn 4
-~

referred to as “spatial models® [51], - this is perhaps the simplest type of model,
consisting of mass and stiffness matrices defined by physical nodal coordinates. Oc-

casionally the damping matrix may also be included whenever a dominant damping

M VY

mechanism such as visco-elastic damping can be identified.

Y.
L]
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o Modal models - these are models whose equations of motion are linear, have con-

stant coefficients, and are expressed in terms of generalized coordinates defined by the

- - -normal modes of vibration and/or static shape functions including rigid body modes.
(These are the models typically used in “modal synthesis.”)

o Equivalent continuum models-as shown in Section 3.3, certain types of substructures
lend themselves to equivalent continuum modeling, where the properties of an equiva-
lent continuum are derived from the properties of the actual structure. The continuum
model eventually must be transformed to either a finite element-type model or to a
modal-type model if it is *o be integrated with the discretized models representing
other parts of the structure.

¢ Input/output models, also referred to as “response models” [51] — these models are
particularly useful for subsystems which do not lend themselves to conventional analyt-
ical modeling, but which can be characterized by experimentally derived input/output

relationships.

Mcdal models are an important class of models for substructuring. They can be de-

rived from each of the other three types of models whenever the systems are linear and time

' invariant. Modal models are advantageous in system identification because they provide
a direct basis of comparison between an analytical model, for which modal characteristics
can be derived, and the physical system whose modal characteristics can be observed ex-
perimentally. When modal models are used in substructuring, a number of technical issues

arise, all related to the fundamental question of how well the substructure modes, with

their artificial boundary conditions, represent the behavior of that substructure when it is

integrated with the rest of the system. Both deformation and stress must be accurately

represented. The key issues are:
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1, Selection of boundary conditions - they may be fixed, free or artificially loaded with

known mass and /or stiffness elements; these are subsequently removed from the model

analytically.

2. Modal truncation - how many subsystem modes must be retained in order to achieve
acceptable accuracy in the system modes and how can truncation error be evaluated?
3. Residual mass and stiffness - how can contributions of the residual mass and stiffness
of the truncated modes to the frequency response at lower frequencies be recovered?
4. Damping - what substructure damping properties are required to synthesize system

damping, and how can they be measured?

System identification adds another layer of complexity and difficulty to the resolution
of these issues, because the systemn model being synthesized from subsystem models is
not precisely known. This imposes the additional requirement that subsystem models be
capable of adjustment to match physical observations of the actual system's behavior.
This may mean, for example, that more subsystem modes must be included in the model.

Potential problems of this nature have not yet been addressed; they are beyond the present

state of the art.
3.4.1. Mathematical Context.

These issues are better understood within the mathematical context of substructuring.
The following development presents the essential features of this context. For simplicity,

a system comprised of only two susbsystems, S% and S°, is considered.

" The equations of motion for a typical subsystem, S°, may be written as follows:

M®:® + D%:° + K°z° = f°, (84)
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- 1n most cases, the damping matrix, D®, is wot known, so the undamped modes are used

to effect the transformation

z°% = ¢%¢q°. (85)

Depending on the boundary conditions selected for the homogeneous form of (84) the
mode shapes, ¢°, may be free-free, fixed-fixed, or anything in between. In general, ¢°
may contain three types of modes: rigid body modes (R), static deformation {(constraint

or attachments) modes (C), and dynamic deformation (normal} modes (N}.

¢ = o ¢ oM)°. (86)

These modes may be employed in any combination, depending on the model, i.e. they

may be all R, all C, all N or any combination of R, C and N - type modes.

Transformation of (84) by (85) leads to equations of the form

maq-u + ddqa + knqo — fqa (87)
~ where o
mo =(¢a)TMo¢a (880)
d° = (¢0)TDa¢a (886)
kS = (¢u)TKa¢a (886)
f3=(9)7s2. (88d)
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Substructure equations of motion are coupled by applying displacement cqmpatibility

" constraints of the form

S cez® +Chzb =0 - (89)

This leads to the transformation

| (%] o

which, when applied to the uncoupled equations, leads to

m

ﬂf["; ‘ﬂaawn’[f 3.,]ﬁq°+ﬂf[’§,° ,ﬂ]ﬂq%ﬂ[&] (91)

or
mc(-jc + dcéc + kcqc - f: (92)

At this point it is assumed that some estimate of the damping matrix, d¢, will be
available, either from analytical considerations which produce D* and (or) D®, or from
subatructure tests which produce d® and/or d®. Details of this topic will be taken up later.
Kriowledge of d° presents a choice between solving the homogeneous form of (92) for the
damped or undamped modes. In either case, the purpose is twofold: (1) to diagonalize
or nearly diagonalize the equations of motion so they may be more easily solved for the
forced response, and (2) to provide a basis of comparison with experimental data. Both .

the damped and undamped mode approaches are presented here for reference.

The undamped modes are obtained by solving the eigenproblem
(k° = A;m)$, = 0 (93)
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where ¢; is the jth undamped modal vector (eigenvector) corresponding to the eigenvalue '

Ay = ng . Tl.e matrices k° and m® are diagonalized by the transformation

qc = qbq (‘.)4)

Transformation of (92) thus leads to

1§+ é4+wig=J, (95)

where

¢Tm¢ =1 (diagonal) (96a)

PR, 8 PO T W o | A A "A‘rx_‘:\_,k > P’?ﬁ?f y h

oTd¢ = ¢ (96b)

w - e
.

$Tkép = w? (diagonal) (96¢)

0

o7 f; = 1q. (96d)

L i =t & i Ol T TR

In the case of light damping, i.e. §;,/2w,, = ¢, << 1, (95) may be solved either

in the time domain or the frequency domain by perturbation methods where the modal

A . % JLUR LI

damping matrix, £, is separated into two matrices containing the diagonal elements, ¢4,

. s

and off- diagonal (or nondiagonal) elements, §,, respectively. In the time domain, (95)

w

may be written (for purposes of approximation) as :
I+ &g +wig = fq ~ €nd (97)

.

where the left hand side of the equatlions has been diagonalized. .
!
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The equations of motion are transformed to the frequency domain by taking the

Fourier transform of (95). This gives

[(w? - w?T) 4 1wE)Q(tw) = F,(1w). (98)

The matrix in square brackets is known as the complex impedance matrix, Z(iw). This

matrix may be separated into diagonal and off- diagonal parts, giving

[Za(tw) + Zn(1w)]|Q(1w) = Fy(tw) (99)

where
Z4(iw) = [(w? - W?I) + iwéy) (100a)
Zn(iw) = swén. (1000)

Then using Zd'l/z(iw) as a scaling transformation where

Q(iw) = 273 (1.)Q' (iw) (101)

one obtains

(I+2;'%2,2;V%)Q = 2;'/?F, (102)

where the argument (iw) has been omitted for notational simplicity. In the case of light

damping, (98) has the following approximate solution:

Q=214 2" 202" ") 25,
(103)

~ Z‘;l/z(l - ZJI/ZZnZd_l/Z)Zd—I/qu




The significance of this result is that the frequency-dependent complex matrix inversion is

avoided, leading to an efficient way of solving the equations of motion for complex frequency

. response, without having to solve the 2n x 2n eigenproblem for complex eigenvalues and

eigenvectors.

The frequency response matrix in the generalized g-coordinate system is recognized

to be

Hy=2;Y%1-2;"?z.27" 27 V2 (104)

In the original z-coordinate system it is simply

H, = [Z%] =THTT (105)
where
T = ["Z, ;’b] Bé = ¢°B¢. (106)

The damped modes of (92) are obtained by placing the second-order equations in

first- order form

or

AP + BSr¢ = [t (107)

Complex eigenvalues, A;, and eigenvectors, ®,, are then obtained by solving the eigen-

problem
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(AA, + B°)®, = 0. (108)

If d° is assumed to be symmetric, then both A° and B° are real symmetric matrices, and

the eigenvectors, ®, will diagonalize both of them. Normalization of ¢ such that

TA® =1 (109)

feads to a particularly convenient diagonalized form of (107)

It + Ar = f, (110)
where

TBd - A (111a)

TS = /. (1118)

Transformation of (110) to the frequency domain gives

(A 1+ wl)R(tw) = F,(iw). (112)

The frequency response matrix in the generalized r-coordinate system is therefore

Hy(iw) = (A +swl)™h (113)

Transformation back te the x-coordinate system gives

H.(iw) = TH,(iw)TT (114)

where
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and where ¢ has been partitioned such that

SHE [“’“]r=¢r. (116)

It is of interest to note here that
ol = VA (117)

The damped mode approach has been deliberately formulated to reveal the parallel
nature of the damped and undamped mode approaches. The trade-offs between the two

are then obvious. In summary, the frequency response in both cases is given by

H, (iw) = ¢°8 Hoe (iw) BT (¢°)7. (118)

In the undamped mode case, Hyo(tw) is given by

qu(tw) — ¢Zd‘l/2(l + Zd“/zznz(;l/z)—lzd—[/2¢'r
(119)
z¢(zd—l _Zd-lznzd—l)¢T

where Z4 and Z, are given by (100). In the damped mode case, Hq-(iw) is given by

Hy(iw) = ®Y(A + sw) "} (@Y)T. (120)

Thus it is seen that the benefit of the complex mode formulation is that the approximation
in (119) is avoided. Conversely, the benefit of the real mode formulation is that the

computational burden of solving the 2n x 2n cornplex eigenproblem is avoided. It can be
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shown mathematically 1 that for light damping (e.g. ¢ < 0.1) the error of approximation
in (119) is negligible, even for closely spaced modes. In any case, the error is less than that
introduced by the assumption of a diagonal modal damping matrix, which is equivalent to

ignoring the term, 27 'Z,Z; ", in (119).

3.4.2. Boundary Conditions.

Inasmuch as model verification is one of the primary reasons for substructuring, the
0 boundary conditions selected for substructure modes must be compatible with experimen-

tal capability. For example, very large reaction masses required to achieve fixed boundary

(3
3 conditions on large structures may be impractical. Mass loading and stiffness loading at
2 interface boundaries will be subject to practical limitations consistent with space, geom-
. etry, attachment points, etc. The easiest boundary conditions to implement in the test
. laboratory are free boundaries. However, unless a particular substructure boundary is also

2 free in the assemnbled system, it will not serve well in modal synthesis unless the resulting

modal model is augmented with residual mass and stiffness as discussed in Section 3.4.4.

The best choice for boundary conditions is that which most nearly represents the
actual structural interface in the assembled structure. Residual mass and stiffness con-
tributions to the modal mass and stiffness matrices will be required to the extent that
optimum conditions are not achieved. The simulation of this structural interface is an art,

and requires considerable understanding and insight.

Historically, the fixed-interface method was first proposed by Hurty [53]. A simpli-

fication to Hurty's method was suggested by Craig and Bampton [54]. The methods of

t Gershgorin's Disk Theorem [52] states that all of the eigenvalues of the complez matriz

G lie in at least one of the disks of radius r, = Y |G,k| centered at G,, .
k
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Gladwell {55 and Benfield and Hruda [56] represent the earliest reports on the use of artifi-

e
Y
ﬂzn fl‘ ‘.‘

cially loaded-interface modes. Procedures reported by Goodman (57] and Hou (58] rely on

A

T

free-interface boundary conditions. Since the publication of these earlier papers, numerous

f~l. f}l

2

variations and applications have been reported, e.g. [59]-|65]. Modal synthesis methods

P4

have also been described in at least two text-books [66], (67]; Craig [68] and Fleming {69

T
25

present recent reviews of the methods, Craig from a theoretical viewpoint, and Fleming

L2

from an aerospace applications point of view,

v v
- Pl
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3.4.3. Moda] Truncation and Convergence.

el b

«re e
-,'D‘:u

Modal truncation introduces modeling error. The object of component mode synthesis

I
s

[ g
R W

)

is to replace the conventional finite element mass and stiffness model with a modal model

which incorporates a limited number of modes. The more representative the isolated

v LY,

y te

component modes are of the component’s deformation and stress within the assembled

s
ofafs

RN ]

structural system, the fewer the number of cormponent modes required to achieve a given

»
HEA NS
LY

level of accuracy. Studies have been made to assess this truncation error, and to derive

_r.? ‘

'

» “
. various convergence indicators which may be applied to estimate truncation error without (lj:
F : . vo
. having to rerun the problem with a larger number of modes. Hurty presented a conver- 50
,'"’:
! gence indicator for eigenvalues based on perturbation analysis {70]. Hasselman extended k-
. . . . . . i
X this analysis to obtain a convergence indicator for eigenvectors [71], [72]. Hasselman also .
. .‘\
. derived a convergence indicator based on the gradient of the Rayleigh Quotient in a sub- ::;-:
space orthogonal to the lower modes [71], |72]. In general, the convergence indicator for the i
{ nth system mode is given as the squared magnitude of the gradient, projected onto a sub- ,\
o
$ ‘ space orthogonal to the first n — 1 modes. For small errors where the small perturbation fj,'\"
) Tal
2 ‘
[ assumption holds, this convergence indicator reduces to Hurty's eigenvalue convergence i‘
F e
§ indicator. However, whereas the perturbaticn indicators are meaningless when the small 7
~
E perturbation assumption fails, the gradient indicator provides a lower bound on the eigen- A
v N
i value error even when the error is not small, making it more useful in pratical situations. ‘};
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3.4.4. Residual Mass and Stiffness.

Wesceiza T

As might be expected, the convergence of modal synthesis which employs free- inter-

face component modes is generally poor relative to the other methods where the structural %\Y
interface is loaded in some manner. Free- interface modes should only be employed when-
ever proper account is taken of the “residual” (leftover) stiffness and mass associated with .S\..f.
the truncated (eliminated) modes. McNeal {73] proposed the use of a residual stiffness g«s
matrix to augment a modal model based on free-interface modes. Rubin |74] extended this 53
concept to include residual mass (and damping) matrices and showed how the parameters . E;
could be extracted from an experimentally derived mobility matrix. Martinez, et al, |75] ;"_1_
employed a similar technique in deriving residual stiffness and mass matrices, specifically E‘i
addressing the problem of rotational compatibility at the substructure interface. Hruda E‘;
[76] recently compared the use of free-interface/residual flexibility versus fixed-interface :.F,
methods for Shuttle loads analysis. ::
&
3.4.5. Damping. L
N
When substructuring is not being employed, the treatment of damping in the equa- ;‘:

e

tions of motion usually presents no problem; uncoupled modal damping is almost always

assumed, and is often derived from experimental measurements. The term uncoupled

N

‘h‘

modal damping implies that either the modal damping matrix, e.g. d® in (88b), or £ in

AN

(95) is diagonal, or that the off- diagonal elements may be neglected without introducing

e
Y

significant error in the analysis. In reality, the modal damping matrix is rarely (if ever)

PN, A

diagonal; i.e. “proportional damping” or other special forms of damping which allow the

7

: PR

modal damping matrix to be diagonalized by undamped modes is merely a mathematical

™

convenience. However, even when the off-diagonal terms of the modal damping matrix
are of the same order as the diagonal terms, they may be neglected as long as the modal

frequencies are not closely spaced {77]. This is not true in modal synthesis, i.e. the off-
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diagonal terms of the component modal damping matrices, e.g. d* in (88b), may not be
neglected as explained in {79]. Hasselman [79] suggested a method for generating the full

modal damping matrix from experimental estimates of the damped (complex) modes.

If the complex conjugate cigenvalues A;‘ and eigenvectors ¢ ol subsystem & are

given by

A} = o] tiwg (121a)

P} = @5 1@ (1210)

where 1 = /=1, then the diagonal and off-diagonal elements of d* are given by

d}, = -207 = 2¢]w, (122a)

% = wi (97)TM DR, +wi, (0% )T M ®], (122b)

where ¢} is the Jth modal damping ratio and w;‘J is the jth undamped modal frequency.
The advantage of (122) is that the full modal damping matrix, d%, can be evaluated

without knowledge of the equivalent viscous damping matrix, D®, in (88b).

Both time-domain [80], [81] and frequency-domain methods |82], [83] for estimating
the complex modes have been developed (see Section 5); however, the small imaginary
parts of the complex eigenvectors are not normally used, and therefore not usually re-
ported. It is not known to what extent these estimates have been scrutinized to assess

their meaningfulness; they could be contaminated by noise.

The diagonal elements of d* (or ¢) and perhaps those oll-diagonal elements associ-

ated with closely spaced modes can be estimated along with m and k (Equations 61 and
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65) when the estimation is based on frequency response measurements. However, the re-
maining off-diagonal terms will not be detectable {77]. Reference |78] suggests an alternate
method for evaluating the complex eigenvectors and d* (or £) from frequency response

measurements whenever the modes are not closely spaced.

Several other papers on damping synthesis have appeared in the literature during the
past 10-15 years (84]-(91]. The primary difficulties continue to be (1) the accurate esti-
mation of complex eigenvectors, mass distribution, and the off-diagonal elements of the
modal damping matrix; (2) the estimation of damping contributed by substructure inter-
faces, or portions of the substructures near these interfaces; (3) the treatment of damping
nonlinearities; (4) the effect of prestress on damping, and (5) the effect of environmental
conditions in general (gravity, atmospheric, thermal, etc.) onstructural damping. Reviews
on the subject of damping synthesis are presented in [92], [93); however, these reports are

at least five years old and do not reflect more recent publications.
3.4.6. Eigenvalue/Figenvector Derivatives.

The closed-form evaluation of eigenvalue and eigenvector derivatives plays an impor-
tant role in parameter estimation. These derivatives indicate the sensitivity of structural
modes and frequencies to individual parameter variations, and thereby determine how large
a variation is required to effect a desired change in an eigenvalue or eigenvector. Eigen-
value and eigenvector derivatives also play an important role in characterizing modeling

uncertainty by first-order statistical methods, as discussed in Section 3.6.

The determination of eigenvalue derivatives is shown in References [94], {95], {96! to
be a straighforward and simple calculation, involving only the eigenvector of the eigenvalue

derivative being calculated. For undamped systems, the derivative of the jth eigenvalue,

Aj, to the parameter, 8, is given by
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in the case where the eigenvectors are normalized to unit modal mass. A similar expression
is obtained for eigenvector derivatives.
o¢
7 _ ¢ .
—2 = ¢, (124a)
LT

where v, is a vector whose elements are

o _griLzd, 0K oMy 6, 0M)
iy = O A,—x.(aok ’aak) 2 90, 7 (1245)

In the case of complex eigenvalues and eigenvectors, the corresponding expressions are

ETA = —Q) ‘\150—“ + aek} ¢] (125)
and
9,
—3—07 = @I‘, (1260.)
where
_eT|1lzbu, 84 3By b, 04]
Ly = [A, — (A,aak + aok) > aekJ ®,. (1266)

[t is observed in (124), as well as in (126), that this method for calculating eigenvector
derivatives in general requires all of the eigenvectors; however, a good approximation is
usually obtained from a truncated set as long as a sufficient number is retained. For reduced
models, there is no need to truncate the modal matrix because the cost of computing the
modes is small. For large-order models, Nelson {97] has presented a method for calculating

eigenvector derivatives which requires only the eigenvector corresponding to the eigenvector
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tural response, and systematic error which may be attributed to an incorrect model. The

distinction is an important one to the extent that systematic errors may be eliminated

X
4
Is.
Ny
derivative being calculated. However, a set of linear algebraic equations involving K, M -:;:
. i
(and D in the case of damped modes) must be solved. Q‘:
N
§ When modal synthesis is employed, the question of truncation error arises with regard plaps
e
1o how many component modes are required to achieve satisfactory accuracy in the cal- .:“'.-‘
_ %
i culation of system eigenvalue and eigenvector derivatives. Hasselman [98] addresses this E-;ﬁ
< problem for the case of undamped modes. It is shown that the number of component e
2 \ : : : Coan
y modes required to achieve a given degree of accuracy increases as one progresses from o
- DAt
= RS
" eigenvalues to eigenvectors to eigenvalue derivatives to eigenvector derivatives, but that a A .:;:
"2 limited number of component modes can yield an accurate approximation. =
o .,
N peN
[ ‘\:-:
o 3.5. Modeling Uncertainty. ::::.
a
:: Several types of modeling uncertainty are recognized as being important in the identi- E;‘\
N D
E} fication of large space structures. Ideally, one would like to associate modeling uncertainty Ky
X Y
i’ with the degree to which a model is able to predict the response of a systern to known ';f_
. ;‘T“".
'.‘R inputs, assuming that the response can be measured without error. Modeling uncertainty 3¢
: L
LA . . . . o
'g defined in this way results from two types of modeling error - random error which may be ?'.‘E
S
‘ attributed to the lack of perfect control on the experiments conducted to measure struc- &
-
a0
>

o+

BTG S
Y ~eJ!_f

by identifying the sources of error and removing them. Random error can be reduced by

|48
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exercising greater control over the experiments; in genera!l it cannot be eliminated.
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Modeling uncertainty is reduced during model validation and verification. Validation

- v

3

has been identified with the process of ascertaining whether the structure of a model

]
4

e )

(equations of motion) is correct, and verifization has been identified with refining the

\) l‘{_l‘.'l

parameter estiinates and verifying by numerical comparison that the model agrees with
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experimental data and prior knowledge of the model (Section 1.3). Both entail the removal
of systematic error. Random error can be minimized in the process by carefully controlling
the experiments. For example, if flight hardware is being tested, the variations in materials
and manufacturing are eliminated as sources of random error by testing the particular
hardware being modeled. If prototype hardware is being tested, some control over the
experiment is lost to the extent that random variations occur from one piece of hardware
to another. The testing of scale models introduces additional error, both random and
systemnatic, but is clearly superior to not testing at all, which may be the only other

alternative for large structural assemblies.

Even the most carefully controlled experiments cannot preclude the type of error
resulting from environmental effects which cannot be duplicated in a test laboratory, or
otherwise accurately observed and accounted for in the model. This type of error may
contain both random and systematic error. In general, systematic error which cannot
be detected must be treated as random, in the sense that it is defined by probability

distributions rather than deterministic quantities.

There are basicaily two ways to quantify modeling uncertainty; they will be referred
to as inductive and deductive. The deductive approach would make direct comparisons
between observed quantities, e.g. natural frequencies or dynamic response, and predictions
of those same quantities based on the model. Given sufficient observations, modeling
uncertainty can be quantified statistically. The inductive approach would use statistical
estimates of model parameters to generate variations in the behavior of interest (natural
frequencies or dynamic respunse). These variations can be generated by straightforward
simulation (Monte Carlo), cr approximate means such as first- order statistical modeling
based on a linearized Taylor series expansion of the behavior about a nominal set of

parameter values treated 1s random variables,
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As an illustration of this latter approach, one may consider the uncertainty in a
natural frequency of vibration as follows: A Taylor series expansion of the undamped

natural frequency, w, , about the nominal values of the parameter vector, 8x, would be

written as
o Ow,,
wo, = °Wo, + ) = Al + -+ HO.T. (127)
& k
Then
Dw,, = wo, ~ °wo, = {Bu,, /06}T{A6) (128)
The variance of w,, is given by
E|(Ow,,)?) = E[{3w., /80}T A0A8T {0w,, /88}) (129a)
0l = {0uw,, |068)T Ses{Ow,, 38} (129b)

where Syg is the covariance matrix of the parameter vector, 4, and {aw,,, /38}7 is a row
vector of partial derivatives. The frequency derivatives are directly proportional to the

eigenvalue derivatives given in (123) and (125).

Many difficulties are encountered with the inductive approach. For example,

o There are probably more sources of uncertainty than car bLe identified.

e Even for those which can be identified, there are relatively few sources of data upon
which to base quantitative estimates, let alone statistical estimates with any confi-
dence.

e And, even if ali sources of uncertainty could be identified and appropriately quantified,

one would face the immense task of combining them computationally.
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An incomplete list of possible sources of modeling uncertainty is
emphasize these points.

Table 2.  Sources of Modeling Uncertainty.

A. Material Properties

Elastic constants
Inelastic constants
Creep properties
Thermal properties
Damping properties
Density

B. Manufacturing, Fabrication, Construction, Deployment

Sectional properties (I, A, t,etc.)
Dimensional properties (assembly tolerances)
Joints

Fasteners

Prestressing

Deployed geometry

C. Effects of Ambient Loads

Thermal loads (static, steady-state, transient)
Microgravity

Gravity gradient

Aerodynamic

e Solar particles

D. Modeling Techniques

e Lumped parameter modeling
- Equivalent Stiffnesses
- Mass Aggregation
- Damping assumptions
Finite element modeling
- Mesh size and nodal geometry
- Assumed displacement fields
- Assumed mass distribution
- Coordinate reduction
- Selected dynamic degrees of freedom
- Selected response coordinates
Equivalent continuum modeling
- Assumption of uniformity
- Other idealizations of geometry
- Simplification of boungary conditions

- Discre ization (see finite element modeling)
Modal synthesis

- Approximate boundary conditions

- Modal truncation

- Treatment of residuals

- Damping synthesis
[/O Modeling

shown in ‘Table 2 to




- Experimental error

- Measurement noise

- Computational error

- Discretization error (timne or frequency)
Fluid-structure interaction
Damping

- Assumed viscous damping

- Assumed complex modulus damping

- Other idealizations of damping mechanisms

- Assumed uncoupled modal damping

- Variability in measured modal damping ratios
Modeling of composite materials

- Orientation of plies

- Bonding

- Inhomogeneity
o Effects of nonstructural elements
¢ Modeling of nonlinearities C

- Material (stress-strain, viscoelastic properties) _ -

- Geometric (large deformation, free play, joint slippage, local buckling) NS

- Amplitude dependence (stiffness and damping) e

- Cyr.ie/nistory dependence (stiffness and damping) 3

"\

E. Analysis Methods 5:
¢ Modal Analysis bey

- Convergence » numerical computations :bﬁ

- Orthogonality of eigenvectors R4

- Skipped modes

- Numerical instability

- Round-off error
¢ Linear response analysis

- Coordinate selection

- Modal truncation

- Forcing function uncertainty
¢ Nonlinear response analysis

- Numerical stability /convergence

- Resolution

- Forcing function uncertainty

o TeEn

)

"

e RO

y

o~

As an example of the deductive approach, one may consider expressing modeling un- %’

hE™

certainty in terms of the modal matrix parameters, Am and Ak defined in (64). Here, -
-

LS |

Am and Ak are defined in terms of the difference between predicted and measured eigen- :"
values and the cross-orthogonality of predicted and measured eigenvectors expressed by :';
Q)

(63). As shown in |99, a statistical analysis may be performed, given sets of predicted and X
A

measured eigenvalues and eigenvectors for generically similar structures. First Ak must be ol
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-normalized to remove frequency dependency. This is readily accomplished by normalizing

the elements of Ak as follows

2 _o.,2

Ak, = 2" Yo L9y, (130a)
i3 = o, .2 ( 27) a
%
_ CIRY. 2,2
Akjx = E‘:—';u ~ k) + °w?_ (1 - ¢uy). (1300)
pl

Now if the elements of Am and Ak are considered to make up a parameter vector, Aé,

such that

Ao. = {Amll) Am121 R Am229 Am231 Y Amnns

A/.Cn,AElz,'",_A/.‘n,Akzsy"',A’.‘nn}T (131)

then the covariance matrix, Sj;, is given by
S5;5 = E[A8A87). (132)

Application of this generic statistical model to a particular structure requires the
rescaling of Sj; in accordance with the particular modal frequencies of that structure.
This results in a structure-specific statistical inodel, Sgg, as shown in [99]. The correlation
structure of Sgg¢ is an important part of this statistical model. The statistics embodied
in Sgs can be propagated forward to evaluate response uncertainty, or backward (relative
to the inductive modeling process) to identify dominant sources of physical parameter

uncertainty.

The type of uncertainty model 1epresented by Se¢s is one based on previous experi-

ence in modeling and testing generically similar structures. Structure-specific testing and
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mode] verification not only adjusts a model in the sense of removing systematic error, but

Y
S

also reduces modeling uncertainty. One must be careful, however, to distinguish between

improved confidence (reduced uncertainty) in the estimation of mean parameter values,

!

x
&

and the reduction of modeling uncertainty one would expect to observe in evaluating the

e
Q)

AN TS RN
i A

-~

covariance matrices, S;5 and Sgg, on the basis of verified model predictions as opposed to

N e

unverified model predictions.
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2 aca,

3.6. Experimental Considerations.

Pelrivieel,

The design of experiments for systemn identification is very important. With reference

R AN

again to Section 1.3.1 and Figure 2, it is seen that the design of experiments must take

into account not only the physical hardware, but also the form of the analytical model,

ASNDN

the estimation algorithms to be used in verifying the model, and most importantly, the

a = i S L IACRCE o I

hY

verification procedures which determine how these algorithms will be used to process ex-

QAT . o

: perimental data to refine and verify the analytical models. Just as it was not deemed ha)
. A
within the scope of this report to review structural modeling procedures in depth, so it =
>
- . . . . . . . » ’
is in the case of testing. The discussion here will highlight those aspects of testing and NG
N
experiment design which are especially pertinent to structural system identification. v
\'
:: The primary goal of testing is to simulate the structure, the service environment and g
) ‘s
;: the conditions of service the structure will experience so that the behavior of the structure 3
A .
N o
E! may be observed and recorded. When testing for purposes of model verification, addi- L‘
E . - . o : .
'2 tional objectives are introduced. They follow from the model verification plan which must -
S 4
A ‘s
‘i coordinate the objectives of testing to fully identify the characteristics of the structure. In N
).
I.q o
A the case of large space structures, several types of tests are envisioned, including ground .
J : o ‘
": testing as well as testing in space. :‘-
.): :.1
v :
« .
3 :
:
".'(/ a
Y 100 -~
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Ground testing will be used to identify the most detailed characteristics of small com-
ponents. Once component models have been verified individually, assemblies of two or
more components may be tested to verify their interface models, These tests may proceed
up to the point where the size of the structure exceeds the limited space of the test labo-
ratory, or it is no longer feasible to test in an earth-gravity environment. Scale modeling
may then be employed to permit ground testing of major assemblies and the complete
structural system. Suspension design will attempt to simulate weightless conditions in a

limited way. Other limitations affect the ability to simulate the atmospheric and thermal

-~
environment of space. Thus, while component, assembly and scale model testing may

A&
VoN
enable the mass and stiffness properties of a large space structure to be verified under o)
.ﬁ‘
- . . poN)
the particular conditions of prestress extant in a ground test laboratory, they will not be ..V’,:
W
able to simulate the prestress conditions of a space environment. Nor will they simulate r"
conditions under which structurai damping can be properly estimated. :‘.1‘:
03
g
It is anticipated that some testing in space will be required as part of the identification :

process, before the structure is placed in service. Again, component testing and/or the X
e
testing of assembled components would appear to be desirable. Scale model testing in ;,‘C\
A
space may also have some benefit. All of these considerations must be taken into account ",c,:

when contemplating the type of tests required for identification of large space structures.

PR
LA DR

AP Y

.
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The subsections which follow address five areas of experiment design:

NS

o The Test Environment

Structural Boundary Conditions

.
P

Excitation

e Measurement

X, §ece

e Data Acquisition and Reduction

)

Xk AARANE

Each of these areas should be covered in the preparation of a model verification plan.

The purpose of such a plan is twofold: (1) to establish a set of requirements for testing

”
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in the form of a test specification and (2) to establish specific uses for the test data in
the identification process. Test specifications will serve as the basis for writing detailed
test plans. A verification plan will guide the subsequent utilization of specific data. It
also provides input to technical management, which must coordinate various functional

activities,
3.6.1. Test Environment.

The test environment will attempt to simulate those aspects of the service environment
which affect structural behavior; i.e. in the case of space structures, they include the gravity
environment, the thermal environment, and the atmospheric environment. While this will
be difficult for ground vibration testing of the larger assemblies, smaller components and
smaller scale models may be tested in a thermal vacuum chamber. Specially designed
suspension systems could improve the ability to simulate weightlessness during the ground

testing of larger assemblies.
3.6.2. Structural Boundary Conditions.

As discussed in Section 3.4.2, the boundary conditions selected for experimental eval-
uation of structure and substructure characteristics in the test laboratory should attempt
to simulate those which will be in effect under actual service conditions. In the case of
substructure testing, the simulation of boundary conditions at substructure interfaces is
somewhal less demanding. When interface loading (either mass or stiffness) is employed,
it need not necessarily be of the same magnitude as it would be under actual conditions, as
long as it represents a reasonable approximation. An alternative is free boundary condi-
tions, with mobility measurements at the boundary to identify residual mass and stiffness

[74]. At external boundaries, accurate simulation of the boundary conditions is essential.
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3.6.3. Excitation.

a8 s

In order to observe structural behavior under static or dynamic load conditions it is

necessary that the structure be excited in a way which reveals the behavior of interest.

SAAFM S0 M Ml R

]
3{ Excitation may be provided by ambient (environmental) load conditions or by mechanical ::
i actuators. Forced excitation is always preferable because it is easier to measure and control. PN
;\' Various types of actuators are used; the selection for a particular application depends not :}S'
E only on the type of excitation required to produce the desired structural behavior, but also ‘Ej
i on the environmental conditions in which the actuator must function. Electrodynamic, ,3.5
fj hydraulic, reciprocating mass and rocket-type actuators are among the types commonly ‘;—:
'.:5 used. E::
" N
! In the case of dynamic excitation, the “waveform” of the applied force determines :f"
S the frequency content of the information learned about the structure. Commonly used :E
-:{ waveforms include stationary sine, slow sine sweep, fast sine sweep (sometimes called chirp) ;E
l damped (exponentially decaying) sine, impulse, stationary random and burst random. ;‘:‘:
; The frequency domain analysis described in Section 4.2 may be used with all of these r
:“ waveforins. Any of these forms of excitation may be applied at either single points or :\
é multiple points simultancously. Multi- point input testing is a farily recent development, :1 .
:3 except for stationary sine testing which has utilized multiple inputs for decades. ;‘
5 :5-1
\'i: The duration of stationary excitation or the number of repetitions of transient inputs :{:
: affects the accuracy of experimental dala. Greater accuracy is achieved as more repetitio.s g'
; are used in an averaging process. In the case of stationary random excitation, frequency ;')'
:’2 resolution is directly proportional to the duration of the test. The useful frequency range -E‘
%‘ of experimental results depends on the anti- alias filter characteristics, the data duration, ;
q\\ the sampling interval and the processing algorithm. Other things being equal, the larger ‘
2

the duration and the shorter the sampling interval, the broader the frequency range.

kY

103

EITRY YA
e T

3 s
»

AL

:

L4
Ll

a
-

»

PSRRI S AL T LI P S bl LVE Y VVRVE P VY FLES SRR PR I% 10 3% W A TR AN AR RS A R AR TR AR PR etk T A TR VY, U5 P Te



3.6.4. Measurements,

A model verification plan must specify a list of measurements, and if possible, a
corresponding instrumentation list. Testing in space (ot testing large flexible structures
in a ground test laboratory) may pose instrumentation requirements which cannct be met
with existing measurement devices or techniques. In this case the measurement list would
specify the location of the desired measurement, the type of measurement (acceleration,
displacement, strain, etc.), the range of measurement, the desired accuracy over that
range and, in the case of dynamic measurements, the range of frequencies over which
the amplitude and accuracy requirements apply. The duration and sampling rate of the
ineasurements might also conceivably aflect the selection or design of instrumentation,

especially if power requirements are significant.

The number and type of measurements required for model verification will depend
strongly on the model and how it is utilized. For example, rotational motion at a point is
difficult to measure. if conventional accelerometers are used, they must be spaced close to-
gether and their outputs differenced to detect rotation, [29}. This typically involves taking
small differences of large numbers which results in highly inaccurate measurements, if they
are meaningful at all. An aiternative approach is to measure translational accelerations at
more widely separated points, and use the model to “curve fit" the measurements, where-
upon rotational motion can be derived from the model. This simple example illustrates
the importance of specifying the required measurements in a tnodel verification plan. Not
only must specific measurements be selected to verify specific model parameters, but the

intended use of the weasurements must also be specified.

In preparing a model verification plan, it is useful to develop a matrix for correlating
specific measurements with specific parameters whose values will be estimated from those

measurements. For example, the measurements may be listed down the left side of the
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matrix, and the parameters to be estimated along the top, as shown in Table 3. Symbols

‘are then entered in the appropriate matrix locations to indicate the pairing of particular

measurements with particular parameters. The symbols may designate frequency bands

over which the measurement data will be used to estimate a particular parameter value.

Table 3. Parameter-Measurement Correlation Matrix.

Measurement Parameter

1 )
o 2 - . . oo o o o
3 B o ) oo .o .
- 4 ® o] ( 1) co ] o
5 o o ) XX 000
-__—’6_ S L1 eee
—‘——7 o ) . 000 XX
8 se0e see

e 0.05 «— 0.20 Hz ee 0.25 «—— 1.00 Hz ese 1.00 «— 10.00 Hz.

NOTE: Closed symbols indicate measurements expected to contain information about
the parameter indicated. Open symbols indicate measurements involved in the esti-
mation of the parameter indicated, but. which are not expected to contain information
about the parameter.

Table 3 places the model verification task into proper perspective. If the matrix is
square, then there are an equal number of measurements and parameters to be estimated.
However, if there is a blank column, the parameter corresponding to that column will not
be estimated. If there is a blank row, a measurement is not being used. If the matrix is
diagonal, then there is a one-to-one correspondence between parameters and measurements

(the ideal situation). A fully populated matrix indicates that all of the measurements will
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be used to estimate all of the parameters simultaneously (the least desirable situation).
The matrix may be rectangular. It may have more rows than columns, suggesting an
over- determined system. If it has more columns than rows it may be under- determined,
but not necessarily. Different frequency ranges of the same measurement may contain
the information to estimate different parameters. For example, one frequency response
measurement {rom a base-excited two degree-of-freedom spring-mass chain is sufficient to

identify the two spring stiffnesses if the two masses are known.

In preparing a matrix such as that in Table 3, one begins by developing a list of the
parameters to be estimated. The measurement rows are then added, one by one, until all
of the parameters are “covered.” This task may be repeated several times as an optimum
strategy evolves. It is also advisable that the task be repeated for different candidate
sets of parameters to be estimated. Otherwise, it may be found after the tests have been
completed that the parameters needing adjustment require measurements which had not

been anticipated.

The planning matrix shown in Table 3 suggests a strategy for parameter estimation.
Recalling the objective of grouping subsets of parameters and measurements for parame-
ter estimation, one might initially attempt to estimate the parameters of Table 3 in the
following sequence of separate estimation runs:

1. Parameter 1; Measurement 1; Frequencies 0.05-0.20 Hz

2. Parameters 2, 3, 6; Measurements 2, 3, 4, 5, 7; Frequencies 0.05-0.20 Hz
3. Parameters 4, 5; Measurements 2. 3, 4; Frequencies 0.25-1.00 Hz

4. Parameter 7; Measurement 6; Freq: rncies 0.25-1.00 H2

5. Parameter 9; Measurement 6; Frequencies 1.00-10.00 Hz

6. Parameters 8, 10; Measurements 5, 7, 8; Frequencies 1.00-10.00 Hz
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It is unlikely that the optimum strategy will be selected on the first attempt., Some
learning is usually required. The learning process is facilitated by the availability of com-

putational tools and graphics which provide insight to the decisional process.
3.6.5. Data Acquisition and Reduction.

The preparation of a model verification plan should take into account the methods,
software and hardware available for data acquisition and reduction, as well as the capability
for storing raw data. The use of antialiasing filters to prevent the “folding” of higher
frequency information onto the frequency range of interest introduces roll-off in the higher
end of this frequency range, depending on the type of filters used. A phenomenon called
“leakage” occurs when stationary data are processed by FFT (Fast Fourier Transform)
analysis. The FFT acts as an imperfect filter, allowing signal content (power) from one
frequency to leak to other frequencies causing contamination or “noise.” To supress the
problem, it is common practice to introduce a time “window” that tapers the data so as
to avoid the sharp discontinuities which otherwise occur at the beginning and end of the
finite-time record. There are numerous such windows in use and the user should be aware

of their respective effects on the data.

There are many other detailed operations and procedures commonly employed to
“enhance the quality of spectral analysis.” The implication is that there are many potential
pitfalls to be avoided. For example, “overlap” averaging is used to recover some of the

diminished statistical accuracy of “windowed” data. References [29], and {100]-[103] of the

following chapter discuss data acquistion and reduction procedures in detail.
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SECTION 4. IDENTIFICATION OF INPUT-OUTPUT RELATIONSHIPS.

This section deals with the formulation of the identification problem in the context
ol input-ouiput relationships. It deals with some of the commonly used identification
techniques {or both lincar and nonlinear systeins. Section 4.1 provides a general framework
for the identification process of linear systems in the time domain. Section 4.2 dcals
primarily with identification techniques used for linear systems in the frequency domain.

Section 4.3 introduces series expansion methods which find use mainly in the identification

of nonlinear systems.
4.1. Time Domain Input-Output Relationships.

An understanding of the input-output relationships for a large structure is necessary
for the formulation and development of a parameter estimation algorithm. The discrete
spatial model for the dynamics of a large space structure is generally derived by the finite-
element method. The inodel could be derived by other mathematical techniques such as
finite- differences, etc., but the finite-element method is the most common approach. The
mathematical nodel employs two vector functions, one for characterizing the displacement
of the spatial nodes of the structure, which will be denoted by the vector z(t), and one
for describing the measured nodal displacements, denoted as y(t). The number of spatial
nodes on the structure will be taken as n and it will be assumed that the number of
measured outputs will be !. The vectors z(t) and y(t) will then be n x 1 and { x 1
respectively. The forces on the structure will be denoted by f(t) and it will be assumed
that this is an m x 1 vector with the spatial locations for the applied forces known. At
this point assume that there are no unknown forces acting on the structure and there is
no noise in the measurements. The elimination of the errors due to the influence of these
unknowns in the structure identification and modeling is part of the parameter estimation

algorithm selection and model development.
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The finite-element model spatial node displacements satisfy the second order vector
equaﬁon'

d?z(t) dz(t)
ar TP

where M € R™*", D e R™"*"*, K€ R**" and B € R*"*™, If the structure is linear and

M + K z(t) = B f(t) (133)

time-invariant, as implied in (133), then the Laplace transform of (133) gives

X(s) = (Ms* + Ds+ K|~'(BF(s) + (Ms + D)z(0) + Mz(0)] (134)

where £(0) and Z(0) are the initial conditions of the structure. It is not difficult to show

that the characteristic equation of (134) is

2n
d(s) = det{Ms* 4 Ds + K| = 3 _d;s**"* = 0. (135)

=1

The characteristic equation of {134} will have 2n roots for a lightly damped large .iexible
structure and complex roots will occur in conjugate pair,s with the rigid body modes
having roots at s = 0. The roots other than those belonging to the rigid body modes will
be along the sw axis of the complex s-domair. with a small real part less than zero. The
rigid body mode roots correspond to the undeformed structure being displaced (rotation
or translation) with the complex roots belonging to the vibrational modes of the structure.

There will be n displacements and vibrational modes. Thus z(t) for the free-response case

(no torcing terms) will have the form

z(t) = i kie™* sin(w;t + ?i) (1386)

=1

where @;, w; and k; are the real part of the roots of d(s), the imaginary part of the roots
of d(s) and the partial fraction expansion coefficients of (134) respectively. Additional
terms will contribute to the response when the forcing function is active. Identification of

o, wi and k; for the n modes is adequate to identify the structure.
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Not all of the structure nodes will have an applied force nor will each structure node
have a displacement sensor to measure the motion of the node. If C denotes the measure-
ment madtrix, the location and transfer characteristics of the motion sensors, the output or

measured node displacements will satisfy the equation

y(t) = Ca(t) (137)

where C € R'*™, It has been assumed that B and C are matrices with constant elements,
but these matrices may also be frequency dependent. The elements of the matrices B and
C are dependent upon the actuators and displacement (velocity or acceleometers) sensors
and are therefore frequency dependent. Equations (138) and (137) can be combined to

define the output from the structure, i. e., the measured displacements.

It has been assumed up to this point that the forces acting on the structure are known.
This assumption is not valid for the structure on-orbit as unknown forces will be acting
on the structure. The exact description of these forces is not known nor is the location
of the force concentration available. The forces may be spatially distributed over the
structure and may vary with time. Equation (133) must therefore be modified to include

the additional forces with

d?z(t) dz(t)
ar P

where B, f4(t) is the known part of the applied force and B3(z,t)fn(t) is the effect of

M + Kz(t) = Bufa(t) + Ba(z,0)a(t) (138)

the unknown forces. As stated earlier, B;(z,t) will be spatially and time dependent. In
addition, the force f,(t) may not be a Gaussian process which makes it more difficult to

account for its contribution to the node displacements.

The measured output will depend on the unknown part of the applied force as well

as measurement errors. The latter contribution to the output can be consider as additive

noise thus y(t) has the form
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y(t) = C =z(t) + v(t). (139)

The measured vector y(t) can then be obtained by solving (138) and substituting the
solution into (139). The structure model in (138) and (139) is the one that must be

considered in the identification task.

Some parameter estimation algorithms have been developed with the state variable
formulation as the basis. It is a simple matter to place equation (133) and (137) in the
state variable form where z;(t) = z(t) and z2(t) = Z(t). The state variable formulation

[100| for the node displacement is then given by

[::g;] - ['MO"K —MI“'D] [:;%3] ¥ [M“’%f(‘)] (4o

or in the compact form

X(t)=AX(t)+ B f(t) (141)

where A € R?"*2" and B ¢ R*"*™, It should be noted that X(t) is now a 2n x 1 vector

with components z(t) and Z(t). The measurement equation is now given by

v =les 6| 2] ~exq (142)

where € € R'?", The closed form solution to the linear time-invariant equation of (141)
can be found by taking the inverse of (141) and using the convolution integral for the

forcing function term. The vector X(t) is given by

X(t) = ¢(t,0) X(0) + /td’(t,r)B [(r)dr (143)
0

where

111

LA e S S Y N R RV T Y P I W O T O 0 A PCIC N PP IR DM

-p



..~

B8 AP, " "N E R » A A

O(t,0) = d(t) = e

when the system is linear and

B(t,7) = d{t — 1) = A7),

Equations (133)-(143) are for the continuous time formulation. If the applied forces are de-

terministic and known, the closed form solutions for the node displacements and measured

node displacements can be determined.

The estimation problem must deal with discrete values of y(t) as the measurements
are taken at the times ¢t = k7" where T is the sampling time. The data that is collected,
the measured node displacements, will be discrete. Thus, all of the system equations must
be defined in the discrete time domain or in terms of the z-transforms. The z-transform

of (133) with a zero-order-hold (ZOH) will have the form

Nozzn-l + N112"'“2 4o+ Napoa
23n 4+ dy23n- 4t dag

/(2) (144)

z(z) =

‘The difference equation for node displacements relates the input to the output, i. e. applied

force to node displacement, and is given by

(k) = Nof(k - 1)+ Nif(k-2) + -+ Nan_1f(k ~ 2n) \
145
—dyz(k - 1) = dyz(k ~ 2) + - - + danz(k — 2n) (

where the T has been dropped in the arguments for convenience.

Equation (143) has a simpler form in the z-domain than does the second order vector

equation of (133). The z-transform of (143) with a zero-order-hold (ZOH) is

2(z) = (2] - eAT)7V A7 AT — 1| BF(2) (146)
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with the difference equation

z(k) = eATz(k - 1) + A7 [eAT - I|BF(k - 1). (147)
The measured output is obtained by multiplying z(k) by C in (145) and (147).

The task of system identification is to collect the measured data, i.e. the input time
. sequence f(kT) and the output time sequence y(kT), and to estima’e the time-domain in-
put/output time sequence ®(kT,0)B. An analytical model can then be verified or corrected

as necessary to agree $(kT,0)B. This aspect of the identification task is the verification

and validation of the modei phase.

Several aspects of the identification task must be considered in selecting and imple-
menting an identification algorithm. The factors are:

¢ What are the external forces acting on the structure over which there is no control?
Such forces are accounted for in the second term on the right of Equation (138). These
forces are generally unknown but are inputs to the structure.

e What are the values of the initial displacements and velocities of the structure at
the onset of the experiment to identify the structure? It is obvious from (134) that
the initial conditions enter into the equations of motion. In general the structure will
not be stationary but will be constantly in motion. The motion of the structure may
be small but can the motion be ignored in the identification task?

e What type of forcing function should be selected for optimum result in the iden-
tification task? The total force on the structure is the external forces which may be
unknown as well as the applied forces which are known. It may be the case that the

external forces may cnunteract the applied forces and thus lead to a nonoptimal total

force on the structure.
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1t is a common assumption in tnuch of the theory of identification algorithin develop-
ment that an impulse forcing function can be applied to the system. In practice, there is
no way to generate an ideal impulse and the best that can be accomplished is a pseudo-
impulse, one that is a finite pulse of amplitude f, with a short but finite duration 7. For
example, if F(s) in (134) is due to an impulse then F(s) = fo and if the initial conditions

are zero, i.e. z{(0~) and z(~) are zero, then it fcllows that

Y(s) = C[Ms*+ Ds + K|~ 'Bfo = T(s)fo = H(s) (148)

where T'(8) is the input-output transfer function and H(s) is the impulse response. Sim-
ilarly using the same assumptions of no unknown forces and initial conditions, the input-

output relation from (143) is given by

Y(t) = C/‘ ®(t,r)BFy6(r)dr (149)

where 6(t) is the ideal impulse. As before, the output y(t) is the impulse response which
may be a poor approximation to the actual response of the siructure for the applied pulse
of short but finite duration.

4.2. Frequency Domain Methods.
4.2.1. Linear Relationships.

The identification or estimation of linear input-output relationships is treated exten-
sively 'n 1 - vmber of excellent textbooks on the general subject of tirne series analysis, e.g.
[101)-]107;. This highly developed and well documented subject requires little elaboration,
except to point out some of the alternative analysis procedurcs appearing in the recent

literature. The basic relationships are introduced to facilitate this discussion.

Input and output time histories denoted by z(t) and y(t), respectively, have Fourier

transforms denoted by z({iw) and y(iw), where the Fourier transform of z(t) is given by
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z(tw) = /.00 o(t) e tdt —00 <t <o (150a)

- OQ
and the inverse Fourier transform by

3 badl :
z(t) = ——/ z(iw) e"“'dw —~00 < w < 00 (1500)

21 J_ oo
For linear systems, input and output are related i. the time domain by the Duhamel or

convolution integral

¢
y(t) = /0 H(r) z{t — 7)dr (151a)

and in the frequency domain by the complex product

y(iw) = H(iw)z(iw) (151b)

where H(t) is the unit impulse response function, and H(iw) is the complex frequency
response function for the unit impulse input. The functions H(t) and H(iw) are Fourier

transform pairs, as are z(t) and z(iw), and y(t) and y(iw).

In practice, the Fourier transform and inverse Fourier transform are computed by a
recursive algorithm called the Fast Fourier Transform (FFT) [105]. The FFT operates on
digitized versions of N = 2* samples of the time histories z(t) and y(t) of finite duratio

NT where T is the sampling time. These finite transforms may be denoted by

T
zk(w,T) =/ zk(t) e ‘it (152a)
9
T .
yk(w,T) =/ yk(t) e "t (152b)
0
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where the index k indicates a particular sample function of the process z(t) or y(t). When
z(t) and y(t) are stationary ergodic random processes, the one-sided (for non-negative

frequencies) crossspectral and autospectral density functions are defined respectively as

Gayliv) = Jim % Elz}(iw, T) yx(iw, T)] (153a)
Grz(iw) = Tllm T E[zk iw,T) zx(tw, T)) (153b)

where I/ denoles the expectation operator and the asterisk denotes the complex conjugate.
Estimates of é,y(iw) and é’,,(iw) are obtained by averaging over a number, n, of samples
zk(t) and yk(t) in the manner

~

Gayliw) = Z (w,T) yk(iw, T) (154a)

2
nT

a

. 2
Gzz(iw) = T z.: (w,T) zk(sw, T). (154b)
An estimate of the frequency response function for a single input/output problem is then

given as

H(iw) = ,y(zw)/Gu(uu) (155)

When z(t) and y(t) are transients, the energy spectral density functions corresponding
o (154a,b) are computed as Té’,,,(tw) and Téu(iw) and used to compute H(iw) in a

manner analogous to (151).

The estimation of frequency response will generally involve both random and bias
errors. As Bendat and Piersol [103] explain, bias errors can result from input noise that
does not pass thiu-.4h the system, unmeasured inputs that do pass through the system and

are correlated with the measured input, inadequate resolution in the frequency domain,
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and nonlinearity. The intent is to eliminate or minimize these sources of error, and treat

what remains as random error. Random error is evaluated from the coherence f{':nction,

iy(sw), defined as

oy Gayi(w))?
Veyliw) = G,_.,(iwy) Cyylie)’ (156)

The normalized random errors in the amplitude and phase of H (tw) are given respectively,

in [103] as

2 = 42, (1w)]'?

sz(“w)'\/z-ﬁ

E||H (iw)]) = (157q)

E[P(iw)] = sin L {E(|H (iw) ]} (157b)

where the normalized error is expressed as a coefficient of variation, i.e. the standard
deviation o divided by the mean u. For example,
o(¢(w)]

£|b(iw)] = a8G)]

provided that u[qg(iw)] is bounded away from zero. For small error, the normalized am-

plitude and phase errors are approximately equal and Gaussian.

One of the most troublesome bias-type errors is that which arises from “input noise
that does not pass through the system,” i.e. noise which contaminates the measurement
of the input signal. This is a very common condition under random excitation, as pointed
out by Mitchell [106]. The input power spectrum drops drastically near resonance, because
of the low system input impedance as seen by the driver. The driver is trying to drive the
equivalent of a short circuit; it cannot maintain its normal input force level at a resonant
frequency with the result that the input power spectrum, C‘J’u(iw) , tends to notch (drops

toward zero). When this occurs, noise on the input measurement appears large relative to

117

P

F(:ﬂ-‘sh‘r—
Al
R

.2

o=
s &

g -“_'.-’.

LY

TN
i P

i g% o8 g J
¢ Y
A A s

04

hY
v e

-~

A

T2y

er
Taa

AT VRV ARATRANVN T AT B



the true input; the input signal to noise ratio is no longer large. As a result, the resonant

peak o1 .iic frequency response function is consistently underestimated, i.e. biased.

The condition is clearly demonstrated in mathematical terms by considering measured
input to be contaminated by noise m(t), and the measured output by noise n(t). If the

true input and output are denoted by u{t) and v(t), respectively, then

z(t) = u(t) + m(t) (158a)

y(t) = v(t) + n(t). (158b)
Provided that m(t) and n(t) are uncorrelated with each other and with u(t) and v(¢), it

follows that

é,y(iw) = éw(iw)

-

Gzz(w) = Guu(iw) + Gmm (1w)

in which case

Gayliw) _ Guy (1w) (159)
Gr:z(iw)  Guul(iw) + Gmm(w)

!Ai;(iw) =

If the true frequency response is denoted by

Hy(tw) = Guo(iw)/Gyu(iw) (160)
it is clear that H,(iw) will be underestimated by H,(iw) unless the input signal-to-noise

ratio, é’u.;(iw)/émm(iw), is large.

Mitchell [106] suggests an alternate estimator, fig(iw) , for use near resonance
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ﬁg(iw) - éw(iw) — éuv(iW) +éuu(iw) B ﬁ;(iw)

éyz(iw) éuu(iW) - 7gy(iw) . (161)

In this case the output noise power spectral density, G,,(tw), appears in the numerator.
However, at resonance the output (or response) is large so that the output signal-to-noise
ratio is large. Then

. Guo(iw)  Guoliw) Gy, (iw)

Halte) > & ) = Gunli) ~ Cunlic)

(162)

It follows from this discussion that in practical applications which invulve both input and
oulput measurement noise, one should use A, (iw) as given by Equation (159) near frequen-
cies where the frequency response is notched (antiresonances), and use H,(iw) as given

by Equation (161) near frequencies where the frequency response is peaked (resonances).

It has been stated that input-output relationships serve as a basis for estimating
higher forms of structural modeling quantities such as modal characteristics and design-
type structural parameters. They are also used directly in some applications particularly
where it is too difficult to formulate an analytical model, and the input-output relation-
ship is too complex to perform a modal decomposition. A frequency response function or
a matrix of frequency response functions, for example, can be inverted to obtain the cor-
responding complex impedance. In the case of linear systems, these empirical models may
be superimposed on the analytical frequency- domain models of adjacent substructures to
form what is called a hybrid model [51], [107] and [108]. Whenever a modal decomposi-
tion of the frequency response is not performed, however, the coupling analysis must be
performed at each frequency of the discrete spectrum (resulting from the FFT transfor-
mation). This can be costly where many coordinates are involved, because it involves the
inversion of substructure frequency response matrices, the coupling (or superposition) of
these matrices to obtain the systein impedance matrix, and the inversion of the system

impedance matrix to obtain the frequency response of the system atl each frequency. While
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theoretically possible, this process tends to yield poor quality results due to numerical ill

conditioning arising from the inversion of matrices containing experimental errors.

4.2.2. Nonlinear Relationships.

Unlike the linear case where general relations for arbitrary stationary random signals
passing through arbitrary linear systems have been derived, it is usually necessary to treat
nonlinear systems individually. Bendat and Piersol [109] have developed a procedure for
the identification of a class of nonlinear systems called finite memory square-law systems.
Special bispectral density functions are defined and applied that are functions of a single
variable. From measurements of input data and output data only, results are obtained
to identify the separate frequency response functions for two models of linear systems in
parallel with nonlinear square-law systems. Nonlinear coherence functions are defined from
these models which determine the proportion of the output spectrum due to the nonlinear
operations. Together with ordinary coherence functions, a measured output spectrum for
these models can be decomposed into three components representing the linear operations,
the nonlinear operations, and the remaining uncorrelated noise effects. The paner indicates
also how to analyze other types of nonlinear models by employing similar techniques. In

a later paper [110] these authors address the decomposition of wave forces into linear and

nonlinear components.
4.3. Series Expansion Methods.
4.3.1. Volterra and Wiener Input-Output Representations.

As pointed out in Section 2, the Volterra series representation provides a general
formulation for a memoryless system where the input and output are measured. The set
of kernels (see equation 4) hy, hsz, -, hp completely characterize the dynamic response

of such a system. However the calculation of the kernels is, in general, a difficult job.
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Wiener [111] has shown that an equivalent series expansion is valid for such systems when
the input used is zero mean, Gaussian white noise (GWN). The series then becomes that

given by equation (6) where G, forms a complete set of orthogonal functions with respect

to the GWN input, u(t).

Using equations (7) and (8) in (6), multiplying both sides by u{t —r), and taking the

expectations, yields

qi(r) = E[y(t) u(t — 1)/ P (163)

where P is the power spectral density of the input white noise. This relation is analogous
to (155), but is in general quicker to compute. The effect of unknown (or ignored) inputs
that follow paths which are different from the “input” path are particularly difficult to
assess by this method. References [112| and [113] provide some results in this regard.
However, the effect of output measurement errors can be more easily assessed, and when
the output measurement noise is independent of the input the estimate of ¢, is unaffected

by the noise [113]. The kernel g, can again be obtained through cross-correlation as

g2(r1,72) = E{[y(t) — Ga(gau(t))u(t - ri)u(t - r2)}/(2P?) (164)

In general,

gn(r1272,73, 01 7n) = E{[y(t) = 3 Gmlu(t — n)u(t = ra) - u(t - ra)}/(n! P"). (165)

Expressions for the higher order kernels and /or their transforms for various feedback sys-

tems can be found in reference [113].
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Figure 8. Contour Plot of Kernel ho(7;. 1

Corresponding to the Time Window {3 — —43} sec.

The _Contour Values are A—=-125, B=.75, C=1 D=300.

A typical contour plot for the second order kernel obtained from the response of a
building structure subjected to a near-white base excitation is shown in Figure 8. Further

details may be obtained from reference {113].

The major drawbacks of this techniques are:
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1) it requires a Gaussian broad-band input, broad enough to encompass the frequency
spectrum of interest for the structure;

2) it is relevant to systems whose input-output relations can be described by such series
representations, and hence is not applicable to hysteretic systemns; and,

3) it requires fairly large computing times when dealing .vith higher order kernels.

4) it may not be useful for inputs other than GWN.

The advantages of the methoc are as follows:

1) GWN being the input signal, one does not need elaborate controllers to track a desired
pre-assigned input time history.

2) It provides physical insight into the manner in which the nonlinearities contribute
to the system’s response. The relative contribution of the nonlinearities to the total
response of the system can therefore be evaluated.

3) In feedback systems it provides further insight into the poles (possible ‘resonances’)
of the gystem caused by the nonlinearities.

45) It makes no assumptions about the model structure.
4.3.2. Expansion of Nonlinearities in Series Expansions.

A technigue first developed by Graupe [114] for the identification of nonlinearities in
systems, and used in references [115|, (116} and [117|, is to expand the nonlinearities in
terms of series expansions. As opposed to the method of Section 4.3.1 where the input-
output response relation was expanded in terms of a series of functionals, here the nonlinear
restoring force is expanded in a series of functions. For example, consider a single degree-

of-freedom system described by the equation

mij + k(y,§) = f(t) (166)
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where the restoring force, k, is a nonlinear function of the displacement y, and the velocity,

y. The forcing function is denoted by f(t) and m is the mass of the system. The restoring

force k can be expanded as

Ky 9) =D D aiji(v)¥(¥) (167)

where the coefficients a,; are to be identified by minimizing

|k (y, 9) ~ w(t)ll

where w(¢) = f(t) - my and g is a suitable weighting function. The quantities w(t), y(¢),
y(t) and §(t) are assumed to obtained from measured data. When the functions ¢,(y)
and ¥, (y) are chosen so that they are orthonormal with respect to the weighting functions

g1(y) and g:(y), the a;, terms may be computed using the least squares approach,

ay = / / 01 (8)92 (§)w ()8 (9)%; () dydi. (168)

The quantities y and y are generally replaced by the measurements y and y.

When the restoring force is separable so that

k(y,y) = ki(y) + k2(y) (169)
where, ki(y) = 3 bi¢i(y) and k2(y) = Y as¥(y), major computational advantages result.
Details on the computational aspects of the problem and results on the error sensitivity of

the technique can be found in reference [117|.

The major disadvantages of the method are as follows:
1) 1t is applicable only to nonhysteretic systems. This is because the equation (167)

implies a one-to-one correspondence hetween the restoring force k, the displacement

y, and the velocity y.
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2) It determines the best estimates of the coefficients within the range of amplitudes in
which the system is exercised by the input. Diﬂ'erent inputs will often lead to different
characterizations of the system i.e. the parameters a,; will change depending on the
ran.ge(amplitude) of resporisc exhibited by the system

3) It requires measurements of y, y and § along with the force f(t) at each node of the
system. This is usually impossible for large, general structural systems. Reference
[117] uses the technique for close-coupled dynamic systems. For such special systems,

the method gives reasonably good results.

The major advantages of the method are:
1) There is no restriction on the nature of the input signals
2) The identification requires modest computational storage and computing time.
3) The identification results are not very sensitive to measurement noise.

4) The duration of time over which the data is required to be taken is comparatively

small compared to the Wiener approach. b'
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SECTION 5. IDENTIFICATION OF MODAL CHARACTERISTICS
| ' FOR FLEXIBLE STRUCTURES.

When formulating and solving an identification problem, it is important to have the
purpose of the identification clearly in mind. In control problems such as control of large
space structures, the final goal is to design control strategies for a particular structural
systern. On the other hand, there are situations where the primary interest is to analyze
the properties of a dynamic system, such as stiffness, damping, frequencies, etc. The
control problem might require & fairly accurate model of the system dynamics which will
adequately describe the motion of the system. Fundamentally, one seeks to find a set
of parameters that builds a mathematical model to best reproduce, according to some
criteria, the test data. The mathematical model for a linear finitc~-dimensional dynamic
system typically includes a state matrix, an output influence matrix and an input influence
matrix. Among the modal parameters for flexible structures, damping and frequencies
constitute the state matrix, modes shapes produce the output influence matrix and modal
participation factors yield the input influence matrix. In the field of controls, the process of
constructing a mode! (state space representation) from experimental data is called system
realization [29], [124]. The choice of model structure is one of the basic ingredients in the
formulation of the identification problem. The choice will influence the character of the
realization problem, the computational effort, the possibility to have a minimum order
model, etc. The accuracy of identified modal parameters from the system realization are

thus affected by the choice of the model.

The purpose of this section is Lo present methods using experimental data to estimate
dynamic properties such as damping, frequencies, mode shapes and modal participation
factors which are referred to as modal parameters. The task of modal parameter identi-
fication is treated in several ways by different researchers. Many different methods and

techniques [29,(124] are analyzed and treated. New methods are suggested en masse and,
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s a result, the field appears to look more like a bag of tricks than a unified subject. There-

fore, a most difficult assignment is to organize the bewilderingly large number of ideas.
Many so-called different metiods are in fact quite similar in the sense that they are math-
ematically equivalent but are presented in different ways. Thus a unified mathematical
framework to treat modal parameter identification is needed to achieve some unification
of the field. Although it is very difficult to get a complete overview of the field in rapid

development, the reader is presented with a basic mathematical foundation which provides

insight into the field.

The tuned sine dwell approach is the ear.iest methods of modal parameter identifica-
tion. The method requires the employment of special input signals such as sine-wave inputs
having variable frequencies for frequency response identification [125}-/138|, which makes it
possible to determine the frequencies and light damping. On the other hand, the recently
developed methods for modal parameter identification are based on parametric models in
terms of state equations. Fundamentally, two approaches can be classified with respect
to the basic elements for construction of the data matrix. The first approach, which uses
the impulse response function to construct the data matrix to realize a model for modal
parameter identification, is called the time-domain identification method [139]-(151]. The
second approach, which uses the transfer function matrix to realize a model and then iden-
tify the modal parameters, is referred to as the frequency-domain method [152)- [154). The
first part of this Section is a brief presentation of the classical method, namely, the forced
normal mode excitation approach. The time-domain and frequency-domain identification
methods are then addressed using systern realization theory. The relation among various

exlsting methods is established and discussed. This Section is a short version of Reference

[158].
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5.1. Forced Normal Mode Excitation.

Before presenting the general theory of system realization, a brief discussion of the
classical tuned sine dwell approach is given in this Section. Significant itnprovements have
‘been made in this traditional method of modal testing since its introduction more than 35
years ago. Unlike many of the aerospace companies and government agencies in the United
States which still use the more traditional and time consuming technique, the Europeans
have automated much of the procedure and have been able to reduce test times by an

order of magnitude, e.g., from two modes per day to twenty modes per day.

The forced-normal-mode-excitation method of zxperimental modal analysis is the old-
est method for identifying the modal characteristics of complex structures [125|. In more
recent times, implementation of this approach, particularly in the aerospace industry, has
involved the use of several force transducers {or “shakers”), and many (often hundreds) of
response measurements. This method of testing has come to be known as “multipoint sine
dwell” testing {126]. In addition to the advantage of being able to simultaneously record
the response at hundreds of locations, this method has the advantage of concentrating large
amounts of energy in single modes of vibration, and provides the satisfying experience of

directly perceiving resonant conditions via the human senses.

The traditional disadvantages of the method include the time required to tunc the
modes and the associated difficulty of isolating sufficiently “pure” modes, especially when
the modes are closely spaced in frequency. Large space structures are expected to exhibit
high modal density with many closely spaced modes. With conventional testing techriques,
considerable experience and skill are required to achieve satisfactory results. Comparisons
between the results of multipoint sine dwell testing and other methods for the experimental
identification of structural modes are given in [127],[128]. Several recent survey papers

discuss relative advantages and disadvantages [1],[129).
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Most of the recent advances in multipoint sine dwell testing have been in the imple-
mentation of the force distribution, or “force appropriation” [129]|-[138]. One of the most
advanced systems is attributed to the German research organization, (DFVLR). Their sys-
tem involves approximately 500 channels of data and computer-controlled co/quad analysis
equipment. The object of force appropriation is, in addition to shaping the forcing function
to match the mode being excited, to counterbalance the small damping forces in the struc-
ture such that the response throughout the structure is (as nearly as possible) 90 degrees
out of phase with the forcing function. This is not always easily accomplished because
of limitations in where the force can be applied. The intended result is the excitation of
“undamped modes”, based on the premise that the undamped modes are more directly
comparable to those of analytical models which do not include damping. Whether this is
in fact a real advantage is a matter of current debate. Nevertheless, the achievements of

DFVLR illustrated in Table 8 from {129},{130] are impressive.

Table 8. Test Duration For Four Aircraft Structures Using

the Sine Dwell Method.

LTS
" %o

No. of measured Test
Year Configuration eigenmodes duration
1966 Clean wing 21 6 weeks
1974 5 configurations with 110 6 weeks
2-6 external stores
1978 Clean wing and five 125 10 days
configuration with 2-6
external stores
1984 Transport aircraft 460 26 days

with 2 engines

129

P
.

2
Ay
A

R

ST RA S MAASMECUNSAS M I NS C S STy p AT L AP




8.2. Time-Domain Modal Parameter Identification, [128)- [139]. g

Many different time-domain methods and techniques in the field of structures were g
developed, analyzed and tested for modal parameter identification. The question arises %ﬁ
whether there exists relationship among these methods. The answer is positive. Indeed, a :%5
unified mathematical framework can be developed to present and discuss these methods. BN

The time-domain methods for modal parameter identification in the field of structures start

_,,
L4,

with the transfer function matrix, which yields Markov parameters (generalized impulse E‘Ej
response samples). The knowledge of Markov parameters makes it possible to construct . :
a Hankel matrix [118]-[123] as the basis for the realization of a state space discrete-time a- -
model. This section will thus start with the derivation of discrete-time models from the E%E

ave

Lyl

continucus-time models which are usually used by structural engineers. It will be followed

i

by the basic concept of minimum realization which was developed by Ho and Kalman R
l\:}‘
{123]. Since the Eigensystem Realization Algorithm (ERA) [139]-[141] for modal parameter NG
.s)
identification was developed using the minimum realization theory, it will be presented and :'v-i

discussed first. The Polyreference Technique {144]-[146) and the Least Squares Regression

7

method will then be derived using the mathematical framework developed in the ERA.

5.2.1. State Equations: Continuous-Time and Discrete-Time Models.

f =

e

¥
L4 %4

The equations of motion for a finite-dimensional linear dynamical systemn are a set of

- v
P

n3 second-order differential equations, where n is the number of independent coordinates.

.
Y
-

Let M, D, and K be the mass, damping and stiffness matrices, respectively. The state

5 |

NN

o9
.’

equations can be expressed in matrix notation as

R

s

2
|

Mi + Dv + Kw = f(w,t) (170)

-
AL,

where w, w and w are vectors of generalized acceleration, velocity, and displacement

v

v
T A A, Ay Ay

respectively and f(w,t} is the forcing function over the period of interest at certain specific

A RiX
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- locations. (170) can be rewritten as a first order system of differential equations in a

number of ways. Certain reformulations are more suitable in computation than others.

One reformulation begins with the following definition:

z = [Z] (171q)
A= [-MO"K —MI"D] (1718)
B= [M-OIB,] (171¢)

where By is an ny x m, (n = 2n3), input influence matrix. The integer m is the number

of inputs. Equation (170) can thus be written in a more compact form as

i = Az + Bu. (172)

If the dyrnamic system is excited and measured by the ! output quantities in the out-

put vector y(t) using sensors such as strain gages, accelerometers, etc., a matrix output

equation can be formulated as

y=Cz (173)
where C' is thus an | x n output influence matrix.

Equations (172) and (173) constitute a continuous-time model for finite- dimensional
dynamic systems. The matrix A in (172) is a representation of mass, stiffness, and damping
properties. The input matrix B characterizes the locations and type of input u(t), whereas

the output matrix C describes the relationship between the state vector z(t) and the

output measurement vector y(t).
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Use of the initial conditions z(t) at time t = to gives the solution to the continuous-

tirue equation with an input uft)

- t - -
z(t) = e“(*""]x(to) +/ eA("'")Bu(r)dr (174)

to
for t > to. This equation describes the change of state variable z(t) with respect to the
initial conditions z(to) and the input u(t). It will be shown in the following that the

evaluation of z(t) at equally spaced intervals of time ¢ can be obtained by a discrete-time

representation of (174).

Let the equally spaced times be given by 0,At,24At,---,kAt, -, where At is a
constant interval. Substitution of ¢t = (k + 1) At and to = kAt into (174) yields
(k+1)at

z[(k + 1)At) = eA%tz(kAL) + / eAlk+1)8t=rl By (1) dr (175)
kAt

If u(t) is assumed to be constant over the interval kAt < r < (k+ 1) At and has the value

u({kAt), (175) with a constant matrix B becomes

. At , _
z|(k + 1)At) = eA3tz(kAt) + / eABt+") gr' Bu(kAt) (176)
0

where the variable 7 in (175) has been changed by letting 7/ = kAt — r. Now, define

A= A8 (177a)
at
B = / eA"dr'B (1776)
0
z(k +1) = z|(k + 1)At) (177¢)
and
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u(k) = u(kAt). (177d)

Equation (176) can be then expressed in a compact form

z(k + 1) = Az(k) + Bu(k); k=0,1,2,-- (178)

and (173) becomes

y(k) = Cz(k). (179)

Combination of equations (178) and (179) is the discrete-time representation of a dynamical
system. This set of equations constitute the basic formulation for system identification of
linear, time-invariant dynamical systems, because experimental data are discrete in nature.
If experimental data are recorded in a digital computer, continuous physical measurements

will be directly sampled and converted into digital words.

What are the response characteristics of the discrete model, i.e., as given in equations
(178) and (179)? To observe the response to an impulse in one of the input variables,
u(0) = 1 and u(k) =0 (k =1,2,...) are substituted into (178). When the substitution is
performed for each input element, the results are combined to obtain the impulse response

function matrix Y with dimensions [ x m as follows:

Y(0)=CB, Y(1)=CAB, Y(2)=CA*B, ...,Y(k)=cCA*B, -.. (180)

This sequence of constant matrices, known as Markov parameters, can be obtained from
the experimental data through the transfer function or impulse responses. The Markov

parameters can thus be used as the basis for building mathematica! models for dynamical

systems.

133




5.2.3. Basic Concepts of Realization.

The triple of constant matrices {A, B, C|, which represents the system characteristics
can be used to determine the system'’s response at any of the [ output points to any input
at any of the input points. Such a representation is called a realization of the system. Any

system has an infinite number of realizations which will predict the identical response for

any particular input.

Let a new vector z be defined such that

z=Tz (181)

where T is any nonsingular square matrix. Substitution of (181) into (178) and (179)

yields

z(k+1) =T 'AT2(k) + T"'Bu(k); k=0,1,2, - (182)

y(k) = CTz(k). (183)

It is obvious that the effect of input u(k) on y(k) will be the same for this new system of
equations (182) and (183). Thus, the triple [T~!'AT, T~'B, CT] will also be a realization
for the same system. The predicted responses using the realization [T~' AT, T~ !B, CT)
will be identical to those predicted using [4, B, C]. Because there exists an infinite

number of nonsingular matrices T, there are an infinite number of such realizations.

Minimum realization means a model with the smallest state space dimensions among
all realizable systems that has the same input-output relations. All minimum realizations

have the same set of eigenvalues, which are parameters of the system itself.
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Assume that the state matrix A of order no has a complete set of linearly irdependent
eigenvectors (1, ¥, * -+, ¥n,) With corresponding eigenvalues (Ay, Az, *-+, As,) which
are not necessarily distinct. Define A as the diagonal matrix of eigenvalues and ¢ the

matrix of eigenvectors, i.e.

A:diag(/\],/\z,"',/\no) (184)

and

’»L':[‘pl)tl’ﬁa'”)'l)nol- (185)

The triple |4, B, C| can thei be transformed to the realization [A, v™'B, Cy]| by
choosing T = . The diagonal matrix A contains the information of modal damping
rates and damped natural frequencies. The matrix ¥ ~! B is defined as the initial modal
amplitudes and the matrix C¢ the mode shapes. All the modal parameters of a dynamic
system can thus be identified by the triple {A, w~!B, Cy|. The desired modal damping
rates and damped natural frequencies are simply the real and imaginary parts of the
eigenvalues A, after transformation from the discrete-time domain to the continuous-time

domain using the relation A = In(A)/At.

In the field of structures, time-domain analysis for identification of modal parameters
begins by forming the generalized (r +1) x (s+ 1) Hankel matrix, composed of the Markov

parameters from (180).

Y (k) Y(k+1) Y(k+3)
Y(k+1) Y(k+2) -+ Y(K+s+1)
H(k) = : : . : (186)
Y(k.+ r) Yk +‘r+l) - Y(k +.r-+s)

If r+12n0 and s+ 1 > ng (the order of the system), the matrix H{k) is of rank ng .

To confirm this point, observe from (180) that
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H(k) = V, A*w, (187)
where
C
CA
vV, = |CA? (188a)
CA"
W,=|B AB A*B ... A°B]. (188b)

The block matrix V, is called the observability matrix, whereas the block matrix W, is
called the controllability matrix. If the order of the system is no , then the minimum
dimension of the state matrix is ng < ng . If the system is controllable and observable,
the block matrices V, and W, are of rank ng . Therefore the Hankel matrix is of rank no
by (187). Based on the properties of the Hankel matrix composed of the Markov param-
eters (impulse response function), several methods for modal parameter identification are

discussed in the following sections.
5.2.3. The Eigensystem Realization Algorithm (ERA).

The basic development of the time-domain (state-space) concept is attributed to Ho
and Kalman [123] who introduced the important principles of minimum realization theory.
The Ho-Kalman procedure uses the generalized Hankel matrix (equation 186) to construct
a state-space representation of a linear system from noise-free data. The methodology has
been recently modified and substantially extended to develop the Eigensystem Realization

Algorithm (139)-[143] to identify modal parameters from noisy measurement data.

In contrast to classical system realization methods which use the generalized Hankel

matrix given in (186), the ERA algorithm begins by forming a block data matrix which is

136

k]
»

i

L)
o
Y

o s
RIS

P

= 3

il LAALACLS (I8 3

>y
Pt A ’- ,-

R

T

=2

2 =Sl

.‘.,i‘

P

TR

B

<5

-
a 'y

A

SN W

. o spy o
"'.Al"l{ . 1“



obtained by deleting some rows and columns of the generalized Hankel matrix of (186), but
maintaining the first block matrix intact. Furthermore, the standard ordering of entries

in the generalized Hankel matrix does not need to be maintained.

Let B = by, bz, -+, bm] and CT = [cT, eI, ---, ¢T| where the column vector b; is

the control influence vector for the ith control inp ¢ and the row vector cJT is the measure-

ment influence vector for the jth measurement sensor. Denote column submatrices of B
by B,, (+ =0,1,---,n) and row submatrices of C by C;, (j =0,1,---,£). The matrices
B, and C,T are subsets of B and C7T, [by,b3,*+,bm| and [¢T,cT,. .-, cT| respectively.

The ERA data block matrix can then be expressed by .

H(k) = [Yii(si + k+t.)];  Yi(si +k+t) =C 4%k B, (189)

where 8o = to = 0, and s, and ¢, are arbitrary integers. When 1 = j = 0, Yoo(k) =

Y (k) = CA*B.

The ERA block data matrix (equation 189) allows one to include only good or sirongly
mneasured signals without losing any capability. This is useful since some measurement data
may be noisier than others or sensors may malfunction during the test. The advantage
of this capability is the potential to minimize the distortion of the identified parameters
caused by noise. A judicious choice of data and its proper arrangement in the block
matrix H(k) can also be used to minimize the computational requirements of the method.
For example, the columns of H(k) may be made as independent as possible by properly
selecting the data samples to use as entries of the matrix. This effort could substantially
reduce the order of the matrix for large problems. Fcr sufficiently low noise data, the
order can be the same as that of the true system state matrix A. This fact results from

examination of the controllability and observability matrices, to be discussed next.

From (189), it can be shown that
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H(k) = VeA*w, ' (190a)

C

C,A*
Ve = : (190b)

C(A“
W,=|B A“B; ... A"B,]| (190¢)

where V; and W,, are generalized observability and controllability matrices.
Assume that there exists a matrix H! satisfying the relation

W,H'Ve =1, (191)

where I, is an identity matrix of order r. It will be shown that the matrix H' plays a

major role in deriving the ERA. What is H'? Observe that,

H(O)H'H(0) = VW, H'VW, = VW, = H(0) (192)

The matrix H' is thus the pseudoinverse of the matrix H(0) in a general sense.

The ERA process starts with the factorization of the block data matrix (equation

189), for k = 0, using singular value decomposition of [142]:

HO)=PDQT (193)

where the columns of matrices P and Q are orthonormal and D is a rectangular matrix

Dr 0
o=[% 3

with
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Dr = diag[dl, dz, ceey, dn, dn+h Ty dr]

and monotonically non-increasing d; (1 = 1,2,...,7)

dl 2d22"‘2dn2dn+12'“dr.>_0-

Next, let P, and @, be the matrices formed by the first r columns of P and @, respec-

tively. Hence the matrix H(0) and its pseudoinverse become

H(0) = P,D,QT where PTP. =1, =QTQ, (194)

and

H' =Q,D 'PT. (195)

Equation (195) can be readily proved by observing (192).

Define O; as a null matrix of order !, I; an identity matrix of order {, and Ef =

[l Oy --- Oy]. Using (189), (190), (191), (194), and (195), & minimum order realization

can be obtained as follows:

Y (k) = ETH(k)Em
= ElviA"W, E,, (use (189) and (190))
= Ef VW, H'V | AX W, HIWV W, E,,  (use (191))
= ETH(0)[Q,D; ' PT\V A*W,|Q. D ' PT|H(0)E,, (use (190) and (195))
= EiH(0)Q, D; V3DV PTH(1)Q, Dy V3 ¥ D /2 PTH(0)Ere  (use (194))

= Ef P.D}/*|D;V?*PTH(1)Q, D V2 D}/ 2QT Enn,.
(196)

This is the basic formulation of realization for the ERA. The triple
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A=D V*PTH(1)Q,D:"?, B=DVQTE,, C=ETPDV?  (197)

is a minimum realization. The order of the matrix A is r which is equal to ng (the order
of the system) for sufficiently low noise data. When the matrices P, and Q, are obtained
through other factorization methods such that P, 2T # I, and Q, QT # I,, (197) is

still valid if the matrices PT and QT are replaced by P! and Q! respectively.

Due to measurement noise, noniinearity, and computer round off, the block matrix
H(k) will usually be of full rank which does not, in general, equal the true order of the
system under test. It should not be the aim to obtain a system realization which exactly
reproduces the noisy sequence of data. A realization which produces a smoothed version of
the sequence, and which closely represents the underlying linear dynamics of the system,
is more desirable. Several accuracy indicators have been investigated for quantitatively
partitioning the realized model into pure (principal) and noise (perturbational) portions
so that the noise portion can be disregarded. Two principal indicators now available are the
singular values of the block data matrix and a parameter referred to as Modal Amplitude
Coherence. The number of retained singular values determines the order of the realization,

and Modal Amplitude Coherence is used to assess the resulting degree of modal purity.
If (190) and (191) are exarmined as a whole the equality

H(0) = V¢W, = [P, D;/*)|D;/7Q] | (198)

defines the controllability and observability Grainmians as

W,W) =D, and V]JV¢=D,. (199)

The fact that the controllability and observability Grammians are equal and diagonal

implies that the realized system |4, B,C] is as controllable as it is observable. This
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' ‘property is called an internally balanced realization. It means that the signal transfer from

the input to the state and then from the state to the output are similar and balanced.

Some singular values, say dn4,---,d,, may be relatively small and negligible in the

sense that they contain more noise information than system information. In other words,

L e N8

the directions determined by the singular values d,4,, -, d,, have less significant degrees

of controllability and observability relative to the noise. It would be unwise to require
a realization including these directions. The reduced model of order n after deleting
singular values d,44,  -,d, is then considered as the robustly controllable and observable
part of the realized system. References [139]-[141] provide the mathematical framework

for establishing the relationship between these accuracy indicators and the characteristics

of the noise.
5.2.4. The Polyreference Technique (Canonical-Form Realization).

During past the two decades, several algorithms for the construction of canonical-
form representation of linear systemns have appeared in the controls literature [120},[{121].
Researchers in the field of controls are mainly concerned with, for an example, determin-
ing a passive or an active network that has a prescribed impedance or transfer function.

Although techniques of canonical-form realization are available in the control literature,

,,J‘

o
. [

direct application to modal parameter identification for flexible structures has not been

addressed. Among several available methods for canonical-form realization, one based on

7

F4

I

Hankel matrices will be addressed in this section.
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Recently in the field of structures, a method, similar if not identical, to a canonical-
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form realization, was developed in [130],[131] using frequency- response functions for iden-
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Polyreference technique will be presented in this c:ction using a new approach which pro-
vides insights of correlation between the Polyreference technique and the Canonical-Form

Realization.

Form the (r + 1) x (s + 1) block Hankel matrix

Yo v(@ .- Y()

Y(1 Y(2 v Y(s+1

Ho = |1 YE e e (200
Y(r) Y(r+1) - Y(r+s)

where r and s are integers which are chosen to be larger than the order of the system.

Using the singular value decomposition, find the nonsingular matrices P and @ such that

HO) = P =172 2[5 S]i0n @uFf (201)

where D, is a diagonal matrix containing monotonically non- increasing nonzero singular
values. The integer n is determined by the characteristics of the system noise as discussed
in [140|. All singular values numbered after n are considered as zero values. The matrices
P, and P, denote respectively the first n and the last remaining columns of the orthonor-
mal matrix P. Similarly, @, and @, denote respectively the first n and the remaining

columns of the orthonormal matrix Q.

Now observe, from the definition of Markov parameters, that

c
Ho)=vw; v=|C%4Y| and w=(B 4B - a'B]  (202)

CA"
where V and W are observability and controllability meatrices respectively. Since matrices

P and Q are orthonormal, i.e., PTP = QTQ = I, (201) and (202) lead to

PTH(0)Q = PTYWQ =

PTVWQ, P,,TVWQo] _ [D,, oJ (203)

PTVYwWQ,. PIvwq, 0 o0
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whlch yieldq
PTVWQn = Dn, (204)
PTVYWQ, =0, PIVWQ.=0, (205)
and
P,VWQ, =0. (206)

Note that the ERA algorithm is developed using the matrices P,, @, and D, as shown
in (204). If the system is assumed controllable and observable, each of the five matrices

P., V,W, Q. and D, are of rank n. By (204), it means that the ranks of matrices

PTV and WQn are n. Thus (205) and (206) imply

PTv=0 and WQ,=0. (207)

The matrix P, provides the left orthonormal basie for the null subspace which is orthogonal
to the observability matrix, whereas the matrix Q, gives the right orthonormal basis for

the null subspace which is orthonormal to the controllability matrix. Now partition the

matrices P, and Q, as

PT=(PL, P, ... PI] and Q7=Q% @} - Q) (208

Subatitution of (202) and (208) into (207) yields

,
S PICA'=PLC+PRCA+ -+ PIcA™ =0 (209q)
1=0
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i A'BQoi = BQoo + ABQoy + -+ + A*BQ,, =0 (2090)

i=0
Equation (209) is the basic formulation for the Polyreference technique and the Canon-
ical Form Realization. In fact, (209a) is the basis for an observable canonical-form real-
ization whereas (209b) is the basis for a controllable canonical-form realization (see [121],
pp. 321, Problem 6-19 and 6-21). Both equations (209) should produce the same results.
The question arises as to whether (209a) is more favorable than (209b) or vice versa. The

answer is given in the following.

Observe that each submatrix P, (¢ = 0,:--,r) must have more columns than rows
(the number of outputs {). Similarly, each submatrix @, (¢ =0, --,s) has more columns
than rows (the number of inputs m). Choose square matrices P,; of order | and Qo of

order m respectively from matrices P,; and Q.:, and rewrite (209) such that

r-1 r—1
=N BN PIcAt =car =Y Blcal (210a)
1=0 =0
and
.—‘ - - ‘-l . -~
=3 A'BQ.i[Qu ' =A'B =) A'BQ. (2106)
1=0 1=0
with

}3:: = [POT;]-XPOT; and Q~oi = Qoi[Qoa]-l~

Equation (210) can be rearranged into companion matrix form as

144

n'

Y
',I-I [

PEAGC fed 0%

‘.
ata’a’a

e gn ]
Ry

FIT"UNS %% e
g . ‘l_-'/.f.'.-:’.l "la



. ———— .

c 0 I 0 o 1r ¢
CA 0 0 I 0 CA
: A=) : R : : (211a)
cAr! q ' Q 0 cen N I CA™3
CA™? - T —-PL -PL - - ;I('r_l) ) CA™!
and
0 O 0 Qoo
Im O 0  Qa
A|B AB A*"'B) -|B AB --- A*"'B] 0 Im 0 Qo2

0 0 - In éo(a—l)
(2115)
‘The matrix J; is an identity matrix of order ! and the matrix I, is an identity matrix of

order m. Now it is claimed from (211a) that the triple

[ 0 I 0o .- 0 ]
0 0 I 0
A=| : o : (212a)
0 0 0 h
Y (0)
Y(1)
B= : (212b)
Y(r—2)
Y(r-1)
C=(L 0 --- 0 O] (212¢)

is an Ir-dimensional realization of the system. Indeed, it can be readily verified that

Y(0)=CB, Y(1)=CAB, ...,Y(r)=CA"B.

145

SN ORI o AN b e s s (ad 7oA

LSRR L RS SSOOAN R Ao \E SN o JTYFY Y. o SOOI b | P AR




Because of the structure of A and C, it is easy to show that the realization is observable.
However, it is not in general controllable. This realigation is called an observable canonical-

form realization. It is not a minimum realization because it is not both observable and

controllable.

Similarly, from (211b), it can be verified that the triple

o o .- 0 Q.oo
Im 0 0 Qol
A=|0 In -+ 0 Qa (212d)
6 0 I;n éo(;—l)
Im
0
B=|0 (212¢)
0
C=[Y(©) Y(1) -+ Y(s-2) Y(s-1)] (212f)

is an mas-dimensional realization of the system. This is a controllable canonical-form
realization which is not in general observable. Again this realization is not of minimum

order.

Equation (212) can be reduced to a minimum order realization by applying the reduc-
tion procedure shown in [121], Chapter 5. However, the canonical form will be destroyed

after the application of the reduction procedure.

The order of either observable or controllable canonical-form realization, i.e., Ir or
mas, is required to be equal to or larger than the order of the system. From a computa-
tional point of view, one should choose the one with smaller dimension to work for modal
parameter identification. The numerical problem for the eigensolution of the canonical-

form realization can be solved in various ways. A technique suitable and efficient for mini-

1468

Rt IR S RS A SRR R AR IR ST YW WL D o T . SN S




computer systems has been implemented and shown in {146]. It should be remarked that
‘only a subset of eigenvalues in the realized state matrix A (see (212)) belongs to the actual

state matrix A, since the matrix A is generally oversized for multi-input and multi-output

measurements.

The method used here to obtain the canonical-form realization is different from that
shown in [144]. Orthonormal matrices P, and Q, are computed through the application
of the singular value decomposition to realize a companion-form state matrix. Since the
orthonormal matrices are very close to identity matrices, this thus generates a computa-

tionally well-behaved canonical-form realization.
5.2.6. An Alternate Method for the ERA and the Polyreference Techniques.

A minimum order of canonical-form realization is generally impossible for multi-input,
multi-output systems due to the constraint that the realized state matrix is a companion

form. If the constraint is released, a minimum order realization can be obtained from

(211).

In view of (201) and (202), the controllability and observability matrices can be ex-

pressed by the following equations
V=PDY? and W =DYQT. (213)

Define O as a null matrix, I;, an identity matrix of order ir and E;, = [}, O] of

dimension Ir x {(r + 1).

Hence, equation (211a) can be written with the aid of (212a) as

(EwPa)DY2A = A[E,Pa|DY? — A= D7V E, P, AlE P, (214)
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' where H'! means the pseudoinverse of H. This is a minimum realization of order n.
To compute (214), a simple procedure can be developed as follows. Define o; as a shift
operator which shifts ! columns of a matrix, for an example, o; Ej, =[O I,]. In view of
the definition of the shift operator o, the companion matrix 4 in (212a) and (213), (214)

becomes

K AT Y PRGSO T Y

A = D7V Ey Py|t[01E i Pa]DY/? (215)

Here, [0 Ei, P,| simply means the matrix obtained by deleting the last ! rows of the

matrix P, and |E|, P,| represents the matrix obtained by deleting the first ! rows of the
matirix P,. This equation was first presented in [147]. Since P, is an orthonormal matrix,

a special and efficient procedure can be developed to compute the pseudoinverse of the

I R & .

matrix Ei. P using the matrix inversion lemma [147].

h Similarly, an equation for the determination of the state transition matrix A can be

derived from (211b) as

A= D.l./z[UmEmaQn]TlEman]TtD;l/z (216)

where |Em, @n] means the matrix obtained by deleting the first m rows of the matrix Q,

and (om En, Qn) represents the matrix obtained by deleting the last rows of the matrix

Qn.

Equations (215) and (216) can also be derived by the ERA procedure. Let an oversized

Hankel matrix H be formed such that

IV AT . BB S DR NS

H(O)=E,H and H(l) =0,E,H (217)

The Hankel matrix H(0) is formed by deleting the last | rows of the Hankel matrix A

, . . .
T R RS Y LT AL A WIS Y T WL ST S R WYV €T R RN Sy

-,

whereas the Hankel matrix H (1) is obtained by deleting the first | rows of the matrix H .
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Find the orthonormal matrices P, and Qn, and a diagonal matrix D, such that

H = P.DnQT. (218)

rEqua.tion (217) thus becomes

H(0) = |[EirPa|DaQT and  H(1) = [01EirPa)|DaQT. (219)

Substituting this equation into the ERA basic formulation (199) and noting that Q7 Q, =

I, yields the triple

A= D;'?\E, P.)'\o1E\ Pa)DY?, B=D)*QTE,, C=ETP,D\? (220)

n y

The state transition matrix A is indeed identical to that in (215).

MV P ae. o Ao AN AR o O £ 35 RO Y PRSOOS EPTPo L.,

Similarly, it can be written that

T S —— e - -t = —— e .
o L L.t T T R R PP A X 8 NP, 0,

H(0) = HEY, = PaDn[EmeQn)T  (221q)

H(1) = H(omEma|T = PaDn[0mEmQn|” (2218)

where the Hankel matrix H(0) is obtained by deleting the last m columns of the oversized
Hankel matrix A and the Hankel matrix H(1) is obtained by deleting the first m columns

of the same matrix H. Substitution of (221) into the ERA basic formulation, with the aid

of PTP, = In, produces the triple

A= DrltnlamEchn]T[EmaQn]TtD;l“ (222q)

B =DYQTE (2225)
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C = ET P,D}/3, (222¢)

The state transition matrix A is again identical to that in (2186).

Realizations (220) and (222) preserve the same features as for the ERA, including a
good numerical performance, internal balancedness, and flexibility in determining order-
error tradeoff. Based on formulations (220) and (222), a close link between the ERA and
the Polyreference techniques is established through the singular value decomposition and

the generaliged Hankel matrix.
5.2.6 Least Squares Regression Techniques.

The least square regression technique for a discrete-time dynamic model has been
derived and used for system identification for more than two decades (see [115], Chapter
5, pp. 97-99). The same technique was rederived and further developed for the use of
modal parameter identification in the field of etructures, {150],(151]. Here, the least square
regression technique will be formulated using system realization theory which provides a

good basis for the comparison with other methods.

In view of (190) and (191), the measurement function Y (k) can be obtained through

either of two other algorithms as follows:

Y(k) = ETH(k)En,
= ETVeAR W, HV W, E,,
(223)
= Ef Ve AW, HY VW, E,,

= ET|H()HY)*H(0)Epm

or
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Y(k) = ET H(k)Em
= ET VW, H V| A*W, E.,
(224)
= ETVW, [H'V AW, ) E.,
= EFH(0)[H H(1)]* Enm.
Hence, the triple |[H(1)H!, H(0)Em, ET| or the triple [HYH(1), Em, ET H(0)] is a realiza-

tion. The matrix H(1)H' or HtH(1) constitutes the basis for the leas’ square regression

technique (see [115], pp. 97-99).

The matrix H! is the pseudoinverse of the matrix H(0). For a single input, there

exists a case where the rank of H(0) equals the column number of H(0), then

H' = [H(0)"H(0)] ' H(0)"

On the other hand, there exist a case for a single outptut where the rank equals the row

number, then

H'= H(0)"[H(0)H(0)T]™*

The matrix H(1)H' has been used in the structural dynamics field to identify syatem

modes and frequencies (see [150]-{151]). This is a special case representing a single input

which cannot realize a system that has repeated eigenvalues or use sufficiently low noise

data unless the system order is known a priors.

These realizations (equations (223) and (224)) are not of minimum order, since the
dimension of z(t) is the number of either columns or rows of the matrix H{0) which
is larger than the order of the state matrix A for multi-input and multi-output cases.
Examination of (223) and (224) reveals that these two equations are special cases of ERA.

Equation (223) is formulated by inserting the identity matrix (equation (191)) on the
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right- hand side of the state transition matrix A. On the other hand, (224) is obtained by

inserting the identity matrix (equation (191)) on the left-hand side of the state transition

" matrix A. However, the ERA is formed by inserting the identity matrix (equation (191))

on both sides of the state transition matrix A as shown in (196). Because of the different
insertion, the least square regression method does not minimize the order of the system.
Mathematically, if the singular-value decomposition technique or another rank detection
technique is not included in the computational procedures, the realized triple obtained
from (223) or (224) cannot be numerically implemented, unless a certain degree of artificial
noise and/or system noise is present. Noise tends to make up the rank deficiency of the
data matrix H(0). Since the degree of noise contamination is generally unknown, the
least squares regression technique {equation (223) or (224)) is not recommended for modal

parameter identification in the structures field.
5.3 Frequency-Domain Modal Parameter Identification.

Time and frequency are two fundamental bases of description for linear dynamic sys-
tems {152]. For an example, given a single input and single output linear dynamic system,
a three-dimensional space can be constructed for the output response with amplitude as
one axis, and time and frequency as the other axes. A sinusoidal time history for each indi-
vidual frequency (mode) can be treated as a projection on the time plane, existing at some
distance from the origin. This distance is measured along the frequency axis. Similarly,
the dynamic output response has a projection onto the frequency plane. This projection
takes the form of an impulse with an amplitude. The position of the impulse coincides
with the corresponding frequency. Summing multiple time plane projections produces the
time history of the dynamic response. Similarly, connecting all the frequency components

in the frequency plane yields the spectrum diagram. The duality of the time and frequency

description of the dynamic response for a linear system becomes evident.
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This section exposes the close conceptual connection between time-domain and fre-
quency domain approaches to identification of modal parameters for linear dynamic sys-
tems. To identify modal parameters including damping ratios, frequencies, mode shapes,
and modal participation factors, many methods have been developed using frequency spec-
tra (transfer function) analysis or time- domain methods. For many years, the multi-shaker
sine-dwell approach was the primary experimental method employed in aerospace struc-
tural mode surveys. The major advantage is that each mode is experimentally isolated by
careful tuning of a series of shakers and verified as part of the experimental process. The

disadvantage lies in the long elapsed testing time and the requirement for considerable test

engineering expertise.

The current section presents some recently- developed frequency-domain techniques.
All of the methods will be correlated using system realization theory. There are a number
of important features in the frequency-domain analysis, including overlap averaging and
zooming [152]. Overlap averaging is used to smooth the transfer function, while zooming

is used to concentrate all the spectral lines into a narrow band in the frequency range of

interest.

The transfer functions are basic elements for frequency-domain techniques. This sec-
tion starts with the discussion of the transfer function characteristics. It then follows
by the presentation of Eigensystem Realization Algorithm in frequency-domain and the
Polyreference technique in frequency-domain, for the purpose of comparison with time-
domain identification techniques. The conceptual connections between time-domain and

frequency-domein approaches are exposed and discussed.
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5.8.1 Characteristics of the Transfer Function.

As pointed out in the last section, the linear, constant, finite-dimensional dynamical

systems can be represented by the continuous-time model

#(t) = Az(t) + Bu(t) (225)

y(t) = Cz(t). (226)

Taking the Laplace transform of (225) and (226) yields

y(s) = ClsI — A]™(z(to) + Bu(s)) (227)

where | is an identity matrix and s is the Laplace transform parameter. For z(to) = 0,

y(s) = ClsI ~ Aj~Bu(s). (228)

This equation shows the direct relation between the input u(s) and the output y(s). The

function defined by

Y(s) =Clel - A"'B (229)

is called the transfer function matrix of dimension ! (the number of outputs) by m (the

number of inputs).

Let Y (t) be the impulse response function matrix

Y(t) = CciB (230)

which is then related to the transfer function matrix Y (s) by
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- Y(s) = L[Y(8)]
= /w}’(t)c'“dt
] 0 o (231)
=/ CeAtBe~*dt
o
=Clsl - A|"'B
or
Y(t) = L7'[Y(9)]
1 oot+i00 y ot
=5 oo (s)e" ds
1 da+i00 - (232)
= — C|sl - A)"'Be*ds

=

T 27 J oy —ioo
=CeAtp
where the eigenvalues of A are assumed to have negative real parts and £~![] is the inverse

of the Laplace transform operator L|-]. The Laplace transform of the ith derivative of

the impulse response function matrix becomes

LYi(t) = /o CA’eA*Be " dt

=CA'(s] - A]"'B

%
»
Q
o
w ]
:
3
g
?
E
5

= CA’G(s)B (233)
=s'Y(8) - YOt =0) -/ YNt=0)-... Y-Vt =0)
i-1

= GJY(”) - Z Y(k)(t = 0)6).—1-*; j =12,
k=0

where YU) = dY7(t)/dt’ and G(s) = [s] - A]"1.

MAPAANRINC T AAF NS P N R

Let the equaily-spaced time be given by 0, At, 2At,---,kAt,--- where At is a

constant interval. The numerical Fourier transform of the transfer function Y (iw) has the

approximation as follows:
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¥ = [ Y@

[~ <]
~ ) Y(kAt)e WAtAL

k=0
-
= Z CeAkat g —iwkat p,
ka0 (234)
00
- E CAkBC-"UhA‘At
k=0
m .
- z Y(k)e—“dkACAt
k=0
= CG(sw)B
where
A = (Aat (177)
w .
G(iw) = ) A*Bekatay
k=20
and
Y(k) = CA*B. (180)
The Fourier transform of the jth derivative of the transfer function matrix can correspond- ;.*Q
i3
ingly be approximated by X ;.’
X
;'. ‘
) j-1 ' 00 . . . . k
(W)Y (iw) = Y Y ¥t = 0)(iw) "% » Y C AleAkAtBe— kAt AL = CAIG(iw) B. ;'3:
k=0 k=0 I
(235) o
Equations (234) and (235) constitute the bases for the frequency-domain parameter iden- "y
0.. d
tification methods which will be presented in the following. i’:j
-(:fv'
0
.&;

166 Ev




5.3.3. The Eigensystem Realization Algorithm in Frequency Domain, (ERA-

FD).
This subsection presents a brief review of a recently developed technique for modal <
parameter identification which is referred to as the Eigensystem Realization Algorithm ';S\E
&"'
in Frequency-Domain (ERA-FD). In parallel to the Eigensystem Realization Algorithm in j;:
LA

I

v d

time-domain, the ERA-FD starts with a complex data matrix formed by transfer functions

" é

and corresponding shifted transfer functions. Using singular value decomposition on the

LIV
e

e

data matrix, a state space triple [A, B, C] is realized to match the transfer functions of the

..

224 T

L

system. Both discrete-time and continuous-time models are considered for comparisons

with other methods.

Lo

Consider a linear, time- invariant system initially at rest with an m- dimensional input

signal u(t) and a /-dimensional output y(t), subject to an additive disturbance n(t),

A

Py

y(t) = i Y (k)u(t — k) + n(t) t=0,1,2, - (2386)
k=0

where Y(k) is the impulse response matrix. This system has the transfer function as

shown in (234)

AR gy XIS XRA L

0
Y(iw;) = ) Y(k)e ' aMiAt  j=0,1,2, (237)
k=0

AP

The identification problem now is the following. Generate and (or) measure an input
signal u(k),k = 0,1,2,---,N and measure the corresponding output signal y(k),k =
0,1,2,--.,N. Based on these measurements, form an estimate of the transfer function,

subject to the additive noise n(t),

R B A > S 1)

AR BN
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, N N
Yaliw;) = E Y (k) e SkOtw A = Z CA*Be~Mt%iAt = CG(w;)B; j=0,1,--+,N
k=0 k=0
(238)

where

N
Gliwy) = Y Ake oA,
k=0
Given an estimated transfer function Y,(iw;), the goal is to find a triple (4, B,C] of
minimum order such that identities of (238) hold. The triple with minimum order will

minimige the effect of noise on the identified modal parameters.

Define a shifted transfer function by

N
Yf(iw,')g Z Y (k + r)e"tkAti A
k=0

N
= Z CAk+TBe—ikAfUi At
k=0
=CA'G(lw;)B; 1 =0,1,--"

A special recursive formula to compute the shifted transfer function has been developed in

(239)

(153 The idea of the shifted transfer function is derived from the basic concept of system

realization, i.e. the Hankel matrix.

The Eigensystem Realization Algorithm in frequency-domain begins by forming the

r X N complex block matrix

Y (iwo) Yi(iwr) -+ Yi(iww)
H, (k) = YH.,.(iwo) Yk+t..("wl) Yk+t|'("wi) v AW (240)
Vustoos(i90) Vise,alion) - Yiewt,_,(iwn)
where
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CAY
V = .

CAte-s
W = [G(iwo)B G(iw1)B -+ G(iwn)B|

and t; (i=1,..-,r—1) are arbitrary integers. The matrix V is the observability matrix
and the matrix W is the controllability matrix in frequency domain. Now find the singular

value decomposition for the matrix H,(0)

Hy(0) = P,DnQ;; ‘is the complex conjugate transpose (241)

where P, and @, are orthonormal matrices in complex domain, and D, is a diagonal
matrix with positive elements [dy, d ,---, dn] referred to as singular values of H(0).
The rank of H,(0) is determined by testing the singular values for zero. The pseudo-inverse

of the matrix H,(0) can then be given by

H! = Q.D;'P,. (242)
Now observe that, from (240),
H,y(0) = H,(0)H}H,(0) = VWHIVW (243)
which implies
WHIV = I, (244)

where I, is an identity matrix of order n.
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~ Define 0; as a null matrix of order {, J; as identity matrix of order | and Ef =
| 7"7[0!."' yZiy+++,01] where I; is iocated at the ith position. With the aid of (241) - (244), a

minimum order- realization can be obtained from

 Ya(jw) = ELHy(k)Em;

= EFVAWE
= ERV(WH]V|AMW HIV|W Epp; (245)
= Ej{H,(0)H}V A*W H} H,(0) Emi
= EfP.D/? D73 P:V A*W Q. DY/ ?| DY QL Emi
= Ef| PaDy?(D; /2 Py Hy(1)Qn D5/ 31* DY/2 Q5 Ermi.
Examination of (239) and (245) shows that the triple
A=D;'?PH,(1)QnD;'?, B =Gy(iw;)DY*QnEmi, C=EfP.D;/* (246) =

is a minimum realization derived from frequency domain analysis. To compute the matrix
B, the integer j can be any value from 0 to N. For simplicity, it is set to ¢ = 0.
Based on the special characteristics of the forms B and C, accuracy indicators were
developed in {1563] to quantify the system and noise modes. Although the transfer function

matrices Yx(tiw;) (5 =0,---,N) are in the complex domain, the block matrix H (k) can
J /

be implemented in the real domain by putting the real part of each individual matrix

>

Yy(swy) in one block and its imaginary part in consecutive block. In doing this way, all

the computations required for the system realization become real arithmetic.

pr LAY ]

Equation (246) is developed using the d screte-time dynamic model as the basis so that

the realized matrix A represents the state transition matrix (see (178)). The question arises

=

—

whether a realization can be derived using the continuous-time model {171) to identify a

W

e b
A

_state matrix A directly. Recall from (238) that

-
-a
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N
Yo(iws) = 3 CeAkdtpe—thuidt At = CG(iw;)B; i=0,1,---,N. ~ (247)
k=0

r—1
Pr(iwy) = (iw;) Yo(iw;) = Y Y (¢ = 0)(4w;)~'~* = CA"G(iw;) B (248)
=0

for j = 0,1,.-:,N. The shifted transfer functions in this case are obtained by differen-
tiating impulse response function matrix 7 times. For example, if deflection sensors are
used for dynamic measurements, Yo(iw;) represent the transfer function matrix for the
" deflection responses, Y)(iw;)Y describe the velocity responses and Y;(iw;) describe the
acceleration responses. It is generally inadvisable to differentiate a measurement signal be-
cause noise effects are greatly magnified. On the other hand, if accelerometers are used for
the dynamic measurements, Y;(iw,) represent the corresponding transfer function matri-
ces. Then matrices Y)(sw;) and Yo(iw;) can be obtained by integrating the acceleration
signals once and twice to respectively describe the velocity and deflection signals. The

information of high frequency modes may be lost due to the integration process, however.

Now substituting these shifted transfer functions (248) into the block matrix (240)
and performing the same procedures (equations (241) - (246)) such as singular value de-
composition, etc., a minimum realization identical to (246) will be obtained except that
the state transition matrix A is replaced by the state matrix A. The detailed description

is omitted. Instead, a simple example is discussed.

Let the block matrix H,(0) be formed by

Yo I.WO Yo S'W1 .o Yo(iw
B,(0) = [f’;Eiwo; e fffan:;] =vw (249)
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and

W = [G(iwo)B G(iw;)B -+ G(iwn)B].

Nete that the controllability matrix W is identical to the one shown in (240). Observe
that

Y (iw .6 oo Gw -
By = [ i) il o Dillem ] vaw (250)

and assume that the number of rows for the matrix H,(0) is greater than the order of the

system. Find the singular value decomposition for the block matrix

H,y(0) = P..b..o:. (251)

which is similar to (241). The triple

A=[D;VP:R,(1)QaD; %™, B =G '(iwi)DY*QuEmi, C = EJP,DY? (252)
is a direct minimum realization for the continuous-time model (equations (120) and (121})).

6.8.3. The Polyreference Technique in the Frequency Domain.

This subsection presents the Polyreference technique in frequency-domain for modal
parameter identification using system realization theory. The method makes use of a
set of transfer function matrices and shifted transfer function matrices to form a complex
Hankel-like data matrix. By employing singular value decomposition of the data matrix, an

orthonormal matrix is computed to derive an observable canonical-form realization which
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oo isin parallel to the canonical-form realization obtained for the Polyreference technique in

o "T'V'r'tlm,e-domain.

The first part of this subsection will show the direct canonical-form realization of the

" discrete-time model. The close relationship of the time- domain and frequency-domain
Polyreference techniques is established. The second part of this subsection will show the
direct observable-form realization of the continuous-time model. The close relationship

“between this approach and other existing approaches, [82]-[154}, is discussed.

~___Form the (r + 1) x (s + 1) block Hankel-like matrix

Yo(fWQ) Yo(fwl) Yo(in)

v, Y . - e - - .
XA AACAAN i~ A0 MR RRRRA G b 7 i R o ad S

Yl (fWQ) Yl (:'wl) v Yl (in)
Hy(0) = . . ) . =VwW (253)
Yi(two) Yi(twy) -+ Yi(iwn)
where
c
CA
V=1 . (254a)

CA" 9:
: with e
3
: :
, W = [G(iwo)B G(iw)B - G(iwn)B) (2545) 2
and r is an integer chosen such that the number Ir (I =the number of outpuis) is greater :;:
E than the order of the aystem. Using the same procedures shown in (202}-(206), first find E
- 7.
the singular value decomposition of H,(0) such that -
i :
pPT D, O |
: [}; ] Hy(0}[Q@n Qo]= [ 0 0] (255) z
¢ -
) which yields z
Y
\ ¢
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PTVWQa =0 — PTV =0 (256)

where Py, QT, P,, and QT are orthonormal matrices and D, is a diagonal matrix. The

" integer n is determined by the characteristics of the system noise as discussed in (140}, All

singular values after n are considered as zero values.

Now partition the matrices P, such that PT = [PT P ... PX] and choose
square matrices P,; of order ! from matrices P,; (i = 0,1,:-+,7). Substitution of the

observability matrix defined in (254) into (256) with the partitioned matrices Po; produces

r-1 r-1
- [PE)-'PIcA' =caeY Bical (257)
=0 =0
where

B = (B3P,

Equation (257) can be rearranged into companion matrix form as

C [ 0 I 0 0 C

CA 0 0 L - 0 CA

Cola=]| : P : i1 (259)
car-? 0 0 R CAr—?
car-? |-P% -P}y -PL -~ =PI, | lCA™!

The matrix I; is an identity matrix of order {. Now it is claimed from (258) that the triple

-

[ 0 I 0 .- 0
0 0 L - 0
A= AN : (259a)
0 0 Q .- I
[-PH —-Ph -PH - PRy
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Yo(iwy)
B Y\ (iwj)
' - G(iw))B = : : (2598)
' Yy-z(iwj)
Yro1(sw;)
and
C=|L 0---0 0] (259c¢)

is an [r-dimensicnal realization of the system. Indeed, it can be readily verified that

Yo(iw;) = CG(iw;) B

Yi(iw;) = CAG(iw;)B

and

Y, (iw;) = CA"G(iw,) B.

Because of the structure of A and é, it is easy to show .-t the realization is observ-
able. However, it is not in general controllable. This realization is called an observabie
canonical-form realization. Therefore, it is not a minimum realization. Since the control-
iability matrix W defined in (254) does not have the forrr. which explicitly involves the
state transition matrix as the observability matrix does, there does not exist an explicit

controllable-form realization as that for the time-domain Polyreference technique.

Equetion (259) is developed using the discrete-time dynamic model as the basis such
that the realized matrix A represents the state transition matrix. It is natural to question
whether a realization similar to (259) can be derived directly using the continuous-time

model. The answer is affirmative. Replacing the shifted transfer function matrices in (253)
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by the.ones shown in (248) and performing the same procedures (254)- (259), an observable

canonical-form realization identical to (259) will be obtained except that the triple |4, B, €|

~ isreplaced by [A, B, C) where A represents the state matrix for the continuous-time model.

The detailed description is omitted. Instead, a simple example is discussed for comparison

with other existing methods [82],[154].

Let the Hankel-like matrix H,(0) be formed as

Yo(l'wo) Yo(fwl) L ]:Q(in)
ﬁ,(ﬂ)= [Yl(t'u)o) ?ﬂfw;) Y](I'WN)} =VW (260)
Va(iwo) Ya(swi) -+ Ya(iwn)
C
C= CA] (261a)
CA?
where
W = [G(iwo)B G(iw)B --- Gliwn)B]. (2615)

Assume that the number of rows of the matrix H,(0) is greater than the order of the
system. Following the same procedures rhown from (256) to (268) and using the same

notations produces a polynomial equation

CA’+ BRCA+ BoC =0. (262)

Equation (267) can be rearranged into companion matrix form as

[ch] A= [-gfo —I",,] [CCA]' (263)

The matrix I; is an identity matrix of order /. The triple

: 0 I
A= [-f’fo -i;.,,] (264a)
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G(iw;)B = [’;‘:82 ; | (264b)

and

C=(L 0] (264¢)

is a 2/-dimensional realization of the system. Examination of (171) and (264) reveals
that the mass matrix M, the damping matrix D and the stiffness matrix K for a finite-

dimensional system may be related by

M 'K =PB% and M™'D=PJ. (265)

Modal parameters of the estimated system can be o' rained by solving the eigenvalue
problem of (264). If real and undamped modes are soug. ., just solve the eigenvalue
problem with the absence of the matrix 13,7; ir. the state matrix A. The approach used
here to obtain the observable canonical-form realization is different from that shown in
[82] which first introduced the companion-form state matrix A shown in (264) for modal
parameter idertification. However, both methods, which use the same transfer function

matrices to build the state space modei, are conceptually similar,

The orthonormel matrix P, is computed through the application of the singular value
deromposition to realize a companion-form state matrix. Since the vrthonormal matrix is
very close to the unity matrix, the method presented here thus generates a computationally

well-behaved realization.

Now consider a simplest case where the Hankel-like matrix H,(0) is formed by caly
two series of transfer furction matrices Y (iw;) and ¥(iw;) (i =0,1,---,N) as shown

in (250). Assume that the number of rows, 2/, of the Hankel-like matrix is at least twice
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the order of the system. Following the same procedures as shown from (255) to (257)

yields a first degree polynomial equation as

CA+Bic=0. (266)
The triple
A= ~P%, G(iw;)B = Yo(iw;), C=1I : (267)

is @ /-dimensional realization of the system. Equation (266) was introduced in [154] for
modal parameter identification for flexible structures. In contrast to the minimum realiza-
tion shown in (262), this realization (267)) is not of minimum order in the sense that the
identified state matrix is usually oversized if the order of the system is not known a priors.

Furthermore, the number of the sensors, !, must be greater than the order of the system.

5.3.4. An Alternate Method for the ERA-FD Technique and the Polyreference
Technique in the Frequency Domain.

A minimum-order of canonical-form realization in frequency domain is generally im-
possible for multi-input and multi-output systems due to the constraint that the realized
state matrix is a companion form. If the constraint is released, a minimum order real-
ization in frequency-domain can he obtained from (253). The procedures to derive the
minimum order realization are identical to that shown in Section 5.2.5 for the time domain

case. Using the block Hankel-like matrix (263) and notations defined in Section 5.2.5. The

triple
A = D;'3|E,, P,)' |01 E\, P,)D)/? (268)
B = G ! (iw;) DL/3Q} Em (269)
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and

C = EfP,DY? (270)

is a minimum realization of order n. Here, (0; E}, P,] simply means the matrix obtained
by deleting the last ! rows of the matrix P, and [E|, P,] represents the matrix obtained
by deleting the first ! rows of the matrix P,. Since P, is an orthonormal matrix, a special
and efficient procedure can be developed to compute the pseudoinverse of the matrix E;, P

using the matrix inversion lemma (193).

Based on (266), a close link between the ERA-FD and the Polyrefernce technique
in Frequency domain is established. A minimum realization similar to (266) can also be

derived for the direct realization of the continuous- time model.

After several methods in frequency-domain for modal parameter identification are de-
rived using system realization theory, the derivation of the least square regression technique

in frequency domain becomes trivial and thus is omitted.

6.4. Concluding Remarks.

In this section, several methods for modal parameter identification have been presented
and derived using system realization theory. The relations between different techniques
are reasonably well understood and the choice of methods can be made largely on the
basis of the final purpose of the identification, tor example control of flexible structures.
Most methode are claimed to work well on simulated and test data. In spite of a large
literature on identification, there are few papers which compare different techniques using
experimental data. Unfortunately, conclusive results have not been obtained. However, for
a person engaged in application, it would be highly desirable to have comparisons avail-

able. This section illustrates the mathematical relations among several recently developed
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methods via system realization theory, which provides a basis and insight for comparison

and evaluation.

It is hoped and expected, through the interaction of control and structure fields, that
the fleld of modal parameter identification is moving towards more unification and that
there will be more comparisons of different methods. One of the purposes of this section
is to contribute to the goal of unification. The contribution may be fairly small but it
" should serve as a starting point to stimulate more research toward this goal. It is believed
that interaction with other fields such as controls, artificial intelligence, etc. is essential

for progress in developing identification algorithms for structures.

For a section like this size, it is out of question to strive for completeness. This
means that there exists many other techniques available in the fields of modal parameter

identification. The reader is directed to the Bibliography for further information.
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SECTION 6. IDENTIFICATION OF STRUCTURAL MODEL PARAMETERS.

When discussing “identification of structural model parameters”, it is necessary to
specify the set of parameters and the mathematical model that are being used to char-

acterize the structure. The model and the particular set of parameters to be identified

plays a central role in determining which identification methods are most suitable for use.

.

Therefore, before discussing the identification techniques of current interest for large space

hd
> 2

S v
22
h el

i

structures, it is important to discuss the various parameterization methods available. The

&

- ,&.‘:‘-‘.- .

i
presentation in this section is tutorial. Planar structures will be used to provide simple :":
examples of the basic ideas. -

N

oy

.1'.\
6.1. Parameterization Methods: An Overview. §;‘:Ij

a5

In Section 3, finite element methods are reviewed. This is the most common and !
s
.
arguably the most powerful method of discretizing a general large flexible structure. The :S*é
'.(\
global mass and stiffness matrices can be expressed as :q&:‘

2ot}

N N
M=) Mis), K=Y Kiqb) (271) 3
$=1 i=1 Vi
N

where M, K are the contribution of the ith element (or collection of elements, or sub-

RS
\(

structure) to the assembled global matrices and 6 is an n x 1 vector of associated physi-

q-‘yn‘-:

. . . . . hate

cal modeling parameters (densities, Young’s Moduli, cross-section areas, lengths, discrete I
RXY;

. . oAt

masses etc.). Thus @ can be conceived of as the collection of all parameters which con- P

/%
’

stitute the “argument list” of the finite element modeling process. Obviously, for a given

application, there may be an infinity of interpretations implicit in (271).

VTN ,.,.ﬁ .
L EEPIL

Since @ is not always contained linearly in (271), one often makes use of local lin-
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2 oM
M =M, + E aT,-L(o’ - 0;,) (272)
, y=1
~ 9K
K = Ko +Z 'aT,-L("" -9, (273)
i=1
where
Mo = M(8o) (274)
Ko = K(0o) (275)

and the partial derivative (sensitivity) matrices are assembled as

N
oM oM;

Nl =y M (276)
9; 1o =1 99; 1o

N

oK oK,

- =) —]. 2717
ao) 0 i=1 ao’ 0 ( )

It is evident that (272) and (273) can be used to apply small changes to the parameter
vector in order to update M(9) and K () consistent with response measurements. It is of
interest to note the close resemblance of (272) and (273) with the submatrix scaling equa-
tions (279a) and (279b) where the submatrices have now become the sensitivity matrices

and the scale factors are the changes in the physical parameters.

Many space structures, although large in size and complex in detail, behave grossly
as a beam, plate, or shell. In view of this fact, an interesting method of parameterization
is one in which the structure is treated as an equivalent simple continuum model, leading
to a small set of equivalent parameters, as discussed in Section 3.3. This approach is most

attractive for beam-like and plate-like lattice structures with repeating lattice patterns
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and has proven to be quite accurate in predicting natural frequencies and mode shapes
associated with the macroscopic deformations of these structures. This family of methods

is suited for identifying the atructure such that the macroscopic motions are well modeled.

Ac .
Ad
3 A9 ba |6
Ad
Ac,
75m |

Figure 9. Simple Planar Structure.

EXAMPLE 2: To illustrate the use of simple continuum models for parameterization,
the equivalent Timoshenko beam parameters are given for the planar structure of Figure

9. The details for deriving these parameters are presented in Section 3.3.

The horizontal members have cross-sectional area A., the vertical members (1/2) A g

and the diagonal members Ap. All members have modulus of elasticity E and density p.

The equivalent shear and bending rigidities are

GA=2LcLL E Ap/L} (278)

I=:-L%E Ac. (279)

0|

The equivalent mass properties are
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m = p |AgLc + 2AcLc + 24pLpl/Lc (280)

3 2 2
pI=p [AGLG (%) +2AplLp (-Ll-g-) 4+ 2AcLc (523)] /Lc. (281)

Upon deriving these equivalent parameters, notice that (278) -(281) provide a reduction
in the number of parameters from eight (L¢, Lg, Lp, Ac, Ac, Ap, E, p) to four
(GA, EI, m, pl). Upon considering a structure composed of many repeating substruc-

tures, it is obvious that the reduction in number of model parameters is potentially very

significant.

In some identification techniques, the parameter set does not necessarily correspond to
physical properties inherent to the structure. These techniques can be separated into two
genersi classes: those which utilize an initial, approximate model of the structure (through
finite-element analysis, for example), and those which are independent of any modeling
process. As mentioned in Section 3.2, one method of parameterization, which requires the
availability of an initial finite-element model, is to update the global mass and stiffness
matrices by adding (assembling) scaled versions of prescribed submatrices in such a way
that improves the accuracy of the global model (vis-a-vis matching measured response
or eigenvalue/eigenvector data). These submatrices can represent single finite elements
or, more commonly, groups of elements having the same geometry, material properties,
boundary conditions, and modeling assumptions. White and Maytum [169] show that an
array of energy distribution (potential and/or kinetic) among these similar element groups
can be used for identification of the parameter set, which now consists of the submatrix
scaling factors. A potentially crucial pitfall here is that constraining a linear system to
only match measured eigenvalues and eigenvectors does not uniquely identify the system

{176]. An infinity of linear syatems have a given set of eigenvalues and eigenvectors.
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EXAMPLE 3: To illustrate the use of submitn’x scaling factors, consider the structure
in Example 2. Let the horizontal members, the vertical members, and the diagonal mem-
ﬂr:bers be arbitrarily defined as three separate element groups so that the global model can

now be updated (improved) in the following manner

M = My + ayM¢c + agM¢ + agMp (282)

K=Ko+p1Kc+83Kc+ BsKp (283)

where
M, K are the final estimated mass and stiffness matrices
Mo, Ko are the initial mass and stiffness matrices
Mc, Kc are the mass and stiffness contributions from the horigontal members
Mg, Kc are the mass and stiffness contributions from the vertical members
Mp, Kp are the mass and stiffness contributions from the diagonal members

ai, Bi are the to-be-determined submatrix scaling factors.

In another approach, which also utilizes an initial model of the structure, it is desired
to obtain improved mass and stiffness matrices by adding small modifications to their
iritial approximations. Berman and Fiannely [170] and Berman and Nagy [171] determine
minirnum changes in the initial mass and stiffness matrices such that the final model

satisfies the eigenvalue condition

K& = Men? (284)
and the orthonormality condition
eTMY =1 (285)
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 where M is the unknown mass matrix, K is the unknown stiffness matrix, ® is a matrix

of measured mode shapes, and {1 is a diagonal matrix of measured natural frequencies.

- . -Clearly, the dimension of the system is dictated by the number of sensors, their location

being consistent with the implicit discretization. This method has been commonly referred
to as Analytical Model Improvement (AMI). In a similar approach Chen et al [174] ob-
tained improved mass anA stiffness matrices based on the theory of matrix perturbations.
Small perturbations are introduced to the initial mass and stiffness matrices and to the
analytically predicted eigenvectors and eigenvalues such that (284) and (285) are satisfied.
In each of the above methods, the parameter set consists of the mass and stiffness matrix
modifications. Once again, the issue of uniqueness is worth emphasizing: it will be shown
later that these methods do not usually give the correct linear system, even for a complete

set of perfectly measured eigenvalues and eigenvectors.

Since all of the parameterization methods listed above require the availability of an
approximate model of the structure, the identification and modeling processes become
inherently coupled. However, if there is little or no reliable information available for
the structure (which would, of course, be the worst possible scenario), then there is no
modeling process to rely upon and it becomes necessary to identify all elements of the
mass, damping, and stiffness matrices [175]~[177]. It is anticipated from the onset that
this approach is highly redundant for most applications since there are often many more
elements in the mass, damping, and stiffness matrices than the needed number of more
fundamental physical and (or) geometrical parameters previously described. The attractive
feature of this approach is that the parameters (matrix elements) appear linearly in the
equations of motion. The order of the system, and therefore the maximum size of the
uniquely determined parameter set, is established by the number of measurement locations

prescribed during the data gathering step of the identification process. If it is desired to
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_present the equations of motion in state-space form, it may be preferable tc identify the

_elements of the state matrix [114},(178].

In the foregoing, linear models have been emphasized. One expects that nonlinear
“behavior of certain structural elements, such as joints, as well as large deformation ma-
terial and geometrical nonlinearities will complicate at least a significant minority of the
‘upplications. It is impossible to generalize methodology to cover all conceivable nonlinear

models, but several principlea should govern. The most important strategy is to perform

component testing of substructures with special emphasis upon components, such as cou-
pling mechanisms (jointa), where nonlinear behavior is likely. These could be characterized
in the laboratory using, for example, the force-state mapping technique [179] of O'Donnell

and Crawley. Once a parametric model is established for the nonlinear elements, it is

possible to include them directly in the structural model and use (for example) nonlinear

C)

AN
ad

P

least- 3aquares estimation approaches to recover best estimates for these parameters along

Y
A

~

with the rest of the structural parameters. Even though an element is nonlinear, one may

s

1

still benefit from a “best-fitting linear” model. If the residuals are sufficiently small, it may

X

be possible to fit local behavior linearly within a certain operating region of the state space.
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Virtually all control strategies for high dimensioned systems will rely upon a best-fitting

ja

i

linear model.
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6.3. Parametric Identification Methods.
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In Section 6.1, various parameterization methods (to be used in conjunction with iden-
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tific~*ion) are reviewed. The identification techniques applicable to large space structures
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- are now discussed in more detail, with examples to illustrate and explore the relative merits
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of each. In each example, a code is listed which classifies the method and its application %:
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according to Table 1. >3
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Consider first those methods which identify the fundamental physical and (or) geo-
maetrical properties of the structure. The major advantages of these methods are that the
actual physical properties of the structure are identified and the internal consistency of the
finite-element model (or any other discretized representation) is maintained. The major
disadvantage stems from the fact that the structural responses (natural frequencies, mode
shepes, displacements, etc.) are generally nonlinear functions of the parameters, therefore
requiring iterative procedures. Convergence is dependent upon the nonlinearity of the par-
ticular problem and the accuracy of the starting estimates. There are two methods which
m most commonly used: the least- squares (or weighted- least- squares) method and the
‘Bayeeian method, which is simply a weighted- least- squares method with the incorporation
of a priors parameter estimates. The least- squares method and its close cousins, minimal
variance and maximum likelihood estimation, usually do not utilize statistical information
(confidence levels) of the initial parameter estimates, whereas the Bayesian method allows
for rigorous processing of the a priors parameter estimates and their associated confidence
levels in the form of the parameter covariance matrix. This covariance matrix can be used
to qualify the updated parameter estimates relative to their a priort values and covariance
estimates. Also, the least squares method utilizes all of the measured data in batch form
and is therefore applicable to off-line identification only; the Bayesian estimator allows
for sequential processing of the measured data and is therefore (likely) applicable to both
off-line and on-line identification. However, due to the dependence upon the initial param-
eter confidence levels, caution must be used when implementing the Bayesian estimator,
for many different results can be obtained by manipulation of these confidence levels. A
tutorial on the relationship between the least- squares method, the Bayesian method, and

other similar methods is provided by Isenberg {156].

A common starting point for each of the methods is a discretized model of the struc-

ture, in the form of mass, damping, and stiffness matrices, which contains the values of the
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structural properties originally assigned by the engineer The corresponding eigenvalue

problem then becomes

[AZM(8) + A; D(6) + K(6)]@; =0 (286)

where M, D, K: n x n mass, damping, and stiffness matrices

Aj i jth eigenvalue
®,;: n x1 jth eigenvector

6: m x 1 vector of structural parameters.

The objective is to improve the initial parameter vector, 8y, so as to correlate the
analytically determined modal characteristics with those measured on the actual structure.
Since the modal characteristics are generally nonlinear functions of the parameters, each
method requires an iterative scheme to determine the optimal parameter estimates., The

measured eigenvalues and eigenvectors can be related to their predicted values in the

following manner

[¢] - [afe 58]+ [2] o
where
A : ¢ x 1 vector containing the first ¢ eigenvalues
A, & : measured quantities
Y, yo : vectors of residual errors (the sum of measurement and model errors).
If (2868) is expanded in a first-order Taylor’s series a linear relationship between residuals

and parameter corrections can be obtained:
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[ g B ;((%‘;))] = TAS. (288)

The Jacobian matrix is now defined as

|
|
b By
) ;::
: ax/a8 ~
= . 289 !
| T [ao /aa] (289) ﬁ
: This matrix is generally rectangular, depending on the number of measured quantities "\-j
. \-“
s (number of rows of the Jacobian matrix) and the number of parameters to be identified ‘{-
i (number of columns of the Jacobian matrix). The differences in the identification methods N
]
. lie in the determination of Af from (187). F-j\
. [
: 0
The classical least- squares solution to (288) is given as [157] :f-
by ;i'
! -1 5;
! AS = (TTWT)  TTWY (290) “
: <
- '.‘
where W is a symmetric, positive definite weight matrix. If the weight matrix corresponds )
o
to the inverse measurement error covariance matrix then (290) is also interpreted as a L.
maximum likelihood as well as a minimal variance estimator. Hendricks et al [158] used a ‘\
set of measured eigenvalues to estimate the parameters of a flexible structure using (290). ‘
{..
Using Hendricks approach, an iterative solution is required fo. the estimation process, in g
.
which predicted eigenvalues are reevaluated at each iteration (from (286), using the cur- ~
o

rently estimated parameter set). A typical element of the Jacobian matrix, now consisting
of eigenvalue sensitivities only, is determined by taking the derivative of (286) with respect

to the parameter 0; to obtain

. WLLr PO LIPS
ALY NAAL SR,

TS TMRPS PP AT BFID TP ATIILAA YA UEE G AR A AR

T(\3M 8D . 9K\a .
a6, Q;"[D + 2AJ'M]@,'

To compute the Jacobian matrix from (291), the global mass, damping, and stiffness matrix .'f-;
sensitivities are required. These can easily be computed for relatively simple “academic” <
">
180 =
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problems because the global matrix elements are usually known in terms of the parameters.
If a large, complex finite-element model is required to discretize the structure, the local
(element level) matrix elements are known in terms of the parameters, so that the global
matrix sensitivities can be determined by simple assembly of the local matrix sensitivities

(analogous to the assembly of the local mass and stiffness matrices).

EXAMPLE 4: To illustrate the use of least squares estimation, the parameters of the
undamped planar structure given below will be identified. Code (FEM-L/RMP/1,D,B,I)

Figure 10. Schematic of Draper Model.

Ten measured frequencies, simulated from a “true”™ model and corrupted with Gaus-
sian noise (zero mean, standard deviation = 0.05), are used to identify the seven param-
eters inherent to the structure: the bending rigidity (EI), mass density (p), and length
(L) of the appendages, the tip mass (Mr) and tip mass moment of inertia (It) of the

appendages, and the hub mass moment of inertia (Iy) and radius (R).

The prccedure works well provided that a time scale, a mass scale, and a length scale

are defined. The time scale is fixed from the measured frequencies, but the mass and
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length scales must be determined by fixing two of the above parameters at their original
values. For example, if the appendage length and mass density are fixed then a length
scale (L) and a mass scale (p » L) are defined. Alternatively, a priori measured values

could be introduced and treated as additional measurements in the estimation process.

The results below present the initial and final parameter estimates, and the measured
and final predicted natural frequencies for a test case in which the hub inertia and radius

are held fixed.
Table 5. Draper Model Parameters.

PARAMETER INITIAL FINAL TRUTH
scn m’) 135,350 127,220 128,910
0.0023835 0.0022058 0.00227
48.96 48.195 48.0
My (kg) 0.16275 0.15362 0.155
It (kg -m?) 0.273 0.25328 0.26
I,,gc m2) 1670 1670 1670
fm) 12 12 12

Table 6. Natural Frequencies of Draper Model.

MEASURED INITIALLY COMPUTED FINAL ESTIMATED
FREQUENCIES FREQUENCIES FREQUENCIES
(rad/sec) (rad/sec) (rad/sec)

4.3853 4.2612 4.365

7.0007 7.0261 7.0108
51.624 49.771 51.661
52.631 50.762 52.587
160.05 154.29 160.11
160.70 154.89 160.67
337.50 325.20 337.44
337.81 325.65 337.87
577.15 555.96 577.11
577.49 556.39 577.52

The scaling problem, present in the above example, arises because results from the

free-vibration, homogeneous equations of motion are used for identification. Since (286)

is homogeneous, it is evident that at least one arbitrary scale factor can be absorbed
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into the mass, damping, and stiffness matrices, making their identification non-unique
(given only the eigenvalues and eigenvectors). Creamer and Hendricks [159], investigating
this problem further, conclude that knowledge (or direct measurement) of a single mass
and length scale is a necessary condition, but not always sufficient. They show that the
presence of symmetry in the structure can hinder the performance of the identification
procedure, requiring knowledge of a mass and length scale for each symmetric portion of
the structure. Of course, if all of the symmetry constraints are imposed in the structural
model prior to identification, this problem will often be alleviated. Ref. [181] deals with the

observability /identifiability problems in a general way and establishes general necessary

conditions.

Chen and Garba [160] utilize a different approach to solve (288). They assume that
there are only a few very accurate measurements available to identify a larger set of param-
eters. Therefore, a minimum-norm type solution is introduced to select one of the infinite
number of possible solutions. The solution which yields the smallest possible changes in

the values of the parameters is chosen. Defining a positive quantity Q as

Q = (A8))% + (A8)% + - + (AS,,)? (292)
asolution A# is sought such that (288) is satisfied and Q is minimized. If s measurements

are available (s < m), then the first s parameter changes can be written, from (288), in

the form

Ad,
Adq
. = f(A00+1) A09+27 Yy Aom) (293)
Ad,

Thereiore, Q@ can be minimized from
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Equations (288) and (294) contain m equations to solve for the m unknowns, A§.

Again, the procedure requires an iterative scheme to identify the parameters. Instead
of reevaluating the eigenvalues and eigenvectors from the free-vibration equations, which
can be computationally expensive for high-order systems, Chen utilizes matrix perturba-
tion theory to update the predicted eigenvalues and eigenvectors at each iteration. This is
more computationally efficient but is only accurate for very s:mall changes in the parameters
at each iteration. These approximation errors can accumulate and degrade the convergence
of this approach. Claiming that analytical expressions for the Jacobian matrix would be
difficult to obtain for complex structures, the authors use a finite-difference scheme, in
conjunction with the perturbation method, to compute the eigenvalue and eigenvector
sensitivities at each iteration. In applying this method to the Viking Orbiter propulsion
system, it is shown that the final identified model can be highly dependent upon the mea-
surements available and the selection of parameters used to update the model. Observe
that minimizing the correction norm of (292), while it may appear reasonable, is nonethe-
less an ad hoc decision. Experience suggests that this approach should be applied to adjust
a very small subset of the most important parameters whose a priori estimates are least
certain. As is evident in the example below, obtaining good estimates using this method

is not routinely achieved.

EXAMPLE 5: The method of Chen and Garba is used to identify the parameters of
the simple spring-mass system below. Code (LPM/RMP/1,D,B,])

Assume that three parameters are to be identified with two measured frequencies. Equation

(286) then becomes
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Figure 11. Typical Spring-Mass Configuratjon.

T11460, + T13A8, + T13A03 = Ay,

Tg]Aol + T33A02 + T23A83 = Ay,

which then can be rewritten as

T T Aal] _ [Ayl —TnsAoa]
Ty Ta | [ A9 Ay —~ T33l83 "

To obtain the final equation, Q is defined as

= (A8,)? + (A0;)* + (86,)°

which can be rewritten, using (297), as

A AL I SIS T L FPTEER AR A NNERD P ) I P S C I . h e« m—m———
. .

(295)

(296)

(297)

(298)

(299)

(300)

E Q= Q(Aaa).

v o Therefore, minimizing Q yields

P

A %9 _o.

; Thus there are three equations, (297) and (300), to determine the three parameters.

Three test cases were performed for comparison of resuits.
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Table 7. ing- t C
CASE MEASUREMENTS PARAMETERS
I Wi, Wa Ky, K3, Ks
I Wi, Wa K,, K3, m
I w3, W3 K\, K3, K3

The results below show that no unique solution exists even for this simple problem. The

results are dependent upon the measurements used and the parameters to be identified.

Table 8. [Estimated Parameters: Spring-Mass System.

CASE K, (LON/M)* K; (20N/M)* Ks (3.0N/M)* m, (1.0kg)*
I 0.99087 2.0914 2.8422 —_
I 0.99487 2.1128 — 1.0359
I 0.93558 2.1032 2.9237 —

{* values in parentheses are true values)
Table 9. stimated Frequencies: Spring-Mass System.
CASE wy (0.50827)° wy (1.7321)" w3 (2.7824)"
I 0.50827 1,7321 2.7568
i 0.50827 1.7321 2.8026
I 0.497790 1.7321 2.7824

(* values in parentheses are true values)

Notice that the estimated model frequencies match only the frequencies used as mea-

surements.

The Bayesian estimation method [161],{162] is a statistical method for updating a set
of parameters by utilizing prescribed confidence levels associated with the initial values of
the parameters. Of the various forms used for writing the Bayesian estimate from (288),

perhaps the most common is
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A8 =0; — 6y = (TTSF}T + S¢" ) [TTSFIY + S35 (B0 — 8i-1)) (301)

where
6; : vector of updated parameter values (ith iteration)
0i-1 : vector of current parameter values ((f ~ 1)th iteration)
0o : vector of initial (a priors) parameter estimates
Y : vector of measured response minus predicted response at current (1—1) iteration
S¢s : initial parameter covariance matrix

See . measurement error covariance matrix

The confidence levels of the new estimate, computed after (301) has converged, are

obtained from

Sge = (TTS}T + 85"~ (302)

The diagonals of the covariance matrix represent the variances, o3, of each parameter
estimate. As is evident from (301), if the a priori parameter estimates are very poor
(S‘,",l —+ 0), then the Bayesian estimator reduces to the minimal variance estimator, as
described earlier. It is also of interest to note that the identical estimation algorithm of
(301) results if (i) the weighted- least- squares approach is used and the initial estimates
of 8o are treated as additional measurements, or (ii) the minimal variance approach is
used and one seeks the optimum linear combination of the initial estimates 8, and the

measurements Y . These results are proven in Junkins {157].

Many applications of the Bayesian estimator can be found in the literature. Collins
et al [33] use the Bayesian estimator to identify a set of bending and shear rigidity param-
eters for the Saturn-Apollo launch vehicle. Beliveau [163] utilizes the Bayesian estimator

to identify viscous damping properties of a shear building. Dobbs and Nelson [164] use
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the estimator to determine some mass and stiffness parameters for an offshore platform.
To reduce the numerical effort associated with the estimator, Dobbs incorporates a “pa-
rameter linking” constraint procedure in which certain common parameters are held in
fixed proportion to one another. Hasseiman and Johnson (180 and Fries and Cooperrider
{183) use the Bayesian estimator to identify rail vehicle parameters. Fries and Cooper-
rider utilize frequency response measurements in place of eigenvalue-eigen measurements,
Their Jacobian matrix represents the sensitivity of the frequency response function to the
parameters of interest. Other uses of frequency response measurements for Bayesian es-
timation are given in Refs. [32],(184] through [186]. In a recent paper, Martinez (187]
reviews and examines the estimation of a set of physical parameters via least- squares
and statistical (Bayesian) methods and their relation to a more general Extended Kalman
Filter algorithm. In using frequency response data with the EKF algorithm, Martinez
marches through the frequency spectrum one frequency at a time, as opposed to the pre-

vious applications in which sequential processing of batch data is utilized.

Investigating the Bayesian estimation method more carefully, Hasselman [165] pos-
tulates the following bounds for evaluating the estimated parameters in terms of their

associated increase in confidence:

(i) For confirmation of the prior estimate

|a0] < o} (303)

(ii) For a significant change in the prior estimate

|A0] > 20; (304)

(iii) For an acceptable new estimate

1A8] € 0 + 0, (305)
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(iv) For an unacceptable new estimate
|A8] > 2(0g + 05) (306)

In the above bounds, o4 is the standard deviation of the original parameter estimate
and og is the standard deviation of the revised parameter estimate. The transition zones
between the bounds require the engineer’s judgement to draw one conclusion or the other.
If any one of the parameter estimates falls in the range of unacceptability, then the model
and/or the measurements should be closely scrutinized and, perhaps, rejected. To complete

the picture, Hasselman includes the (somewhat arbitrary) bound

to distinguish between those estimates which are statistically significant and those which
are not. For visual inspection of the qualification of the estimate, Hasselman presents
a “significance” plot in reference {165) which incorporates the above bounds in graphi-
cal form. In concluding, Hasselman observes that correct use of the Bayesian estimation
method requires (i) realistic estimates of the measurement uncertainty, (ii) realistic esti-
mates of the initial parameter uncertainty, and (iii) use of measurements that are suffi-

ciently sensitive to the parameters being estimated,

EXAMPLE 6: To illustrate the use of the Bayesian estimator, a set of parameters for
the planar structure given in Figure 10 will be identified. Code (FEM-L/RMP/1,S,B,I]

Ten measured frequencies (zero mean, standard deviation = 0.05) are used to identify
the following six parameters: the bending rigidities of each appendage (EI1, EI2), the

tip masses (M1r, M27), and the tip inertias (I17, I27).
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The results below present the initial and final parameter estimates (with respective

variances), and the measured and predicted natural frequencies.

Table 10. [Estimated Parameters: Draper Model.

B I I A A ]

FRISE I3 S a o g o B 0 JF Sruy b SR 1

PARAMETER INITIAL o FINAL c* TRUTH
EIl (n-m?) 67676 5000 64372 143.28 64453
EI2 (n-m?) 122460 10000 128890 208.08 128910

Mlr }kg 0.16275 0.015 0.16312 0.0047944 0.155
M2 (kg 0.14725 0.015 0.15602 0.0033790 0.155
Ir (kg-m?) 0.273 0.015 0.25481 0.0069702 0.26
127 (kg -m?) 0.247 0.015 0.25988 0.0050982 0.26

Table 11.  [nitial and Final Frequengies: Draper Model.

MEASURED INITIAL ESTIMATED FINAL ESTIMATED
FREQUENCIES FREQUENCIES FREQUENCIES
(rad/sec) (rad/sec) (rad/sec)
3.4700 3.5069 3.4262
6.2445 6.2647 6.2982
36.808 37.699 36.812
52.168 50.986 52.163
113.35 115.94 113.40
160.41 156.73 160.39
238.83 244.06 238.79
337.59 329.88 337.61
408.27 417.49 408.28
577.28 563.80 577.27

To assess the quality of the final estimate (303) can be used along with (306). The

following results give the qualification of the estimate.

Table 12.  Quality of Estimates:Draper Model.

PARAMETER o o* A8 |Ag) - o
Ell 5000 143.28 3304 3160.72
EI2 10000 208.08 6430 6221.92
Ml 0.015 0.0047944 0.00037 -0.0044244
M2 0.015 0.0033790 0.00877 0.005391
g 0.015 0.0069702 0.01819 0.0112198
127 0.015 0.0050982 0.01288 0.0077818
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From (305) it is concluded that all estimates are acceptable. Also, from (304) it is
concluded that all parameters except M1r showed statistically significant improvements.
From (303) it is concluded that the original estimate of M1t is statistically confirmed.

Therefore, the revised model is considered an acceptable model for the structure.

In the above least- squares and Bayesian estimation examples, only frequency mea-
surements were used. One could, additionally, use time domain response measurements
(free or forced), such as displacements, velocities, and accelerations, as long as the response
sensitivities could be calculated. The Jacobian matrix would now become augmented with
both eigenvalue/eigenvector sensitivities and time domain response sensitivities. This al-
lowe for more flexibility in the estimation process, but also requires increased effort in the

computational and experimental phases.

The large paran.eter sets associated with high degree of freedom, complex space struc-
tures may require computationally expensive identification efforts, regardless of the method
employed. As discussed in Section 3.3, many large space structures can be treated grossly
as a beam, plate, or shell, or a simple assembly thereof. These equivaient continuum
models contain far fewer parameters than the discrete models and are, therefore, quite
attractive for some identification purposes. Noor and Anderson [166], Chen and Sun [167],
and Sun et al [168) develop methods for obtaining the equivalent continuum parameters for
lattice structures. The partial differential equations governing the motion of these simple

continuum models can be solved either analytically or by simple discretization procedures.

EXAMPLE 17: The equivalent continuum parameters are identified for a Timoshenko
beara model of the ten-bay planar structure given below. Code (ECM-C/RMP/1,D,B,1)
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Figure 12.  Ten Bay Symmetrical Truss.

The cross-sectional areas of the horigontal, ve.cical, and diagonal members are Ac,

Ag,and Ap, respectively. A representative element of the structure will be used to obtain

AN YISO O N WY TSI AT

the parameters.

; ‘
\ 4
l The partial differential equations governing the classical equivalent Timoshenko beam ) f
L L
: are :
L] l\
- :
i Jw —— .
! —(EI ) + GA(a— ‘/1) = ply (307) E
? ¢
., d
3 —— dw . .
i 5:IGA(; +¥)] = m (308) :
k where w is the centerline displacement and ¢ is the rotation of the beam cross-section. !
¥
‘\_ From Section 3.3, the equivalent beam parameters can be shown to be b
{
GA=2Lc LLE Ap/L} (309) !
L :
El= ELG E Ac. (310) i
t = p|AgLg + 2AcLc + 2ApLp|/Lc (311)
{
!
- L L2 L2 ‘

pl =p |AgLg ( 12) + ZADLD (TZQ) +2AcLc (—G)] /Lc. (312)
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The numerical values are given below for the ten-bay truss:

Table 13. arameters of Ten Bay Truss.
Lg =5 (m) pI =5.5199318 (kg - m?)
E =717 x 10° (N/m?%) EI =717 x10" (N -m?)
Le =10 (m) GA =1,026,087 (N)

Ac =80 x 107 (m? m = 0.7734975 (kg/m)

)

Ag =60 x 1078 (m?)

Ap =40 x 1078 (m?)
p = 2768 (kg/m3)

Using the least- squares estimation method, the equivalent bending and shear rigidities
are identified for the ten-bay structure. The first six bending frequencies (the first three
modes are rigid-body modes and the seventh is an axial mode), obtained from a finite
element model of the actual structure and corrupted with Gaussian noise (zero mean,
standard deviation = 0.20), are used as measurements. To simulate an approximate model,
the modulus of elasticity used for computing the equivalent bending and shear rigidities is

10from a finite element model of the equivalent Timoshenko beam, are given below.

Table 14. reque Estimates: Timoshenko Bea
INITIALLY APPROXIMATED FINAL ESTIMATED MEASURED
FREQUENCIES FREQUENCIES FREQUENCIES
(rad/sec) (rad/sec) (rad/sec)

21.68 21.29 20.51

55.55 53.63 52.88

100.19 95.05 95.26
152.13 142.12 142.58
200.22 193.03 193.76
268.72 245.52 . 244.83

The equivalent mass parameters i and pl are held equal to their calculated values,
whereas GA and EI are estimated to best fit the six measured frequencies. The initial

and final values for the equivalc .t rigidities are given below.
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Table 15. [Estimated Parameters of the Timoshenko Beam.

PARAMETER INITIAL APPROXIMATION FINAL ESTIMATE
GA 1128696 (N) 905280 (N)
ET 7.887 x 107 (N - m?) 7.7313 x 107 (N - m?) b
u\‘cE
In the previously discussed identification methods, the parameter set consisted of :ﬁ:
o
ad

physical properties of the structure, such as the bending rigidity and the mass density.

XN

The remaining identification methods utilize parameter sets consisting of matrix scaling

P,

2

factors or matrix elements to fit the experimental results. The first methods to be discussed

o

& ke

[

are those which require an initial approximate model of the structure. White and Maytum

(169) identify a set of scaling factors which, when multiplied by prescribed submatrices,

¥

oY

improve the accuracy of the global model. The eigenvalue problem for the true model is

XY

given by
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E® = Mon? (313)
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4

where

M, K : the true mass and stiffness matrices

AR

N1? : the diagonal matrix of true (measured) eigenvalues

tro s

®: the true modal matrix
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~
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Q@ : the total number of mass elements

P . the total number of stiffness eiements

My, Ko : the initial global mass and stiffness matrices

M,, K. : the rth element of substructure mass and stiffness matrices transformed
into the global system

a, : the rth mass element scale factor

B, : the rth stifiness element scale factor.

The element mass and stiffness matrices can represent a single finite element or a
group of finite elements having the same assumed geometry, material properties, boundary
conditions, and modeling assumptions. An important point to note is that the use of the
scale factors as described in (314) and (315) conserves the consistency of the original
finite element model so that no unmodeled coupling occurs as a result of the identification

process. White assumes that the true and approximate eigenvectors are related in the

following manner

¢ =¥ (316)

where ®o is the initial modal matrix and ¥ is a general transformation matrix. Using

(314) through (316) in (313) and premultiplying by ®Z gives

Q P
(I+Y 0, dTM, d0)¥0* = (03 + D 6,87 K, 20)¥. (317)
r=1 r=1
In (317), N3 is the diagonal eigenvalue matrix of the original model. To identify the
scale factors, White makes an approximation to (313), and therefore to (317), by using the

initial modal matrix in place of the true (measured) modal matrix (¥ = I in (316)). A

typical row of (317) now becomes
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To fit N frequencies (N > P + Q), (318) can be used to solve for the scale factors, in a

least- squares sense, in the following manner

(5] = B0 EF (@ - 13, (319)

The matrix E; represents the energy distribution of each mode of the nominal model.
The importance of the energy matrix is that it allows for direct examination of the modal
coupling present among the various element groups. This method is often very attractive
in practice since one can use the energy distribution of each mode as a very useful intuitive
guide in defining a “divide and conquer” strategy for solving reduced dimensioned sub-
problems (to improve selected parameters prior to a final global solution). The procedure
described above may require a repeated iterative process to achieve acceptable frequency
correlation. For the undamped case, it is evident, upon comparing (288), (291), and (318),

that White's method is very closely related to the method used by Hendricks [158].

EXAMPLE 8: To illustrate the White/Maytum identification method, and contrast
it with the equivalent continuum method, the ten-bay structure of Example 7 will be
identified. It is assumed that the mass matrix for the structure is correct and the stiffness

matrix must be modified to fit measured frequencies. Code (FEM- S/RMP/1,D,B,I)

To simulate an initial inaccurate stiffness matrix, the following properties are chosen

for the modulus of elasticity of the truss elements:
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Table 16. lagticity o {s.
STIFFNESS TRUE VALUE APPROXIMATE VALUE
E. (N/m?) 71.7 x 10° 81.375 x 10°
E¢ (N/m?) 71.7 x 10° 61.2 x 10°
Ep (N/m?) 71.7 x 10° 87.45 x 10°

To identify the structure, three element groups are chosen as follows:

Table 17.  Truss Element Groups.

GROUP MEMBERS
A 20 horizontal members
B 11 vertical members
C 20 diagonal members

To contrast with Example 7, the same six frequencies will be treated as measurements
for identifying the three stiffness scale factors. The fractional energy distributions for the

elastic modes, obtained by dividing the ith row of {Eo] by Q13 , are giver below.

Table 18. Energy Distribution by Groups.

MODE NO. GROUP EgERGY (per cent)
A
4 92.9 0.0 7.1
5 77.4 0.0 22.6
6 60.6 0.0 39.4
8 45.2 0.0 54.8
9 32.3 0.0 67.7
10 21.9 0.0 78.1

It can be observed that Group B contains no ene-gy in the six modes of interest and,

therefore is not required for model improvement to best fit these measured frequencies.

The initial frequencies, final frequencies (after three iterations), and measured fre-

quencies are compared below.
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Table 19. Estimated Frequencies: Ten Bay Truss.

0 INITIAL VALUE FINAL VALUE MEASURED VALUE
(rad/sec) (rad/sec)) (rad/sec)
4 22.11 20.75 20.51
5 56.87 53.05 52.88
6 102.59 95.05 95.26
8 155.08 142,80 142.58
9 211.40 193.69 193.76
10 268.29 244.84 244.83

In another approach, which also utilizes an initial discretized model of the structure,
Berman and Flannely [170] and Berman and Nagy [171] improve the initial mass and stiff-
ness matrices by adding (hopefully small) modifications determined from a set of measured

modes and frequencies. In updating the model, the eigenvalue conditicn

K® = M30? (320)

and the orthonormality condition

oTMe =1 (321)

are enforced as equality constraints. In these equations, M and K represent the unknown
n X n mass and stiffness matrices (initially approximated by M4 and K,), ¢ is an
n X m matrix of measured eigenvectors, and 01? is an m x m diagonal matrix of measured
eigenvalues. If the modal displacements are measured at a subaet of the coordinates of the
analytical model, the first step of the identification is to obtain an estimate of the moda!
displacements at the remaining coordinates. This is determined by ordering M4 and K4

so that the upper coordinates correspond to those at which the measurements were made.

Equation (320) can now be written, for the ith mode, as

Ki Ky|_ 2| M1 M ®y, | _
(KT Ka] % [M,T Ma]) [%]_0. (322)
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The remaining modal displacements are approximated, consistent with (322), as
®;, = ~(Ks ~ O}Ms) ™' (K7 - OIM])y,. (323)

The second step is to derive the expression for the mass matrix improvement {172].

By defining the quantity ¢ as

£ = MM - MM (324)

the updated mass matrix can be obtained from minimization of £ and use of the orthonor-
mal condition of (321). Notice that & is simply a weighted sum square change in the mass

matrix, with the inverse of the mass matrix Cholesky decomposition used as weights. The

resulting updated inass matrix becomes

M= M4+ MadmH (I —m)m, ' 0T M, (325)

where
mA = @TMAQ

The third step is to derive a similar expression for the stiffness matrix improvement

[173]. Analogous to (324), the quantity £ can be defined such that

E=||M"YHK - K )M™V3. (326)

Minirmizing this function subject to the constraint equations

TKo =0? (327)
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{nd =7

(328)

5

>
"
>
-3
I

yields the updated atifiness matrix

Yot ®

LArLs

K=Kjp-Ks00TM - MOBTK, + MOO?®TM + MEOTK, 30T M. (329)

The advantages of this method are (i) the computational procedure is simple and
requires no iterative process, and (ii) the improved model predicts the measured mode
shapes and frequencies exactly (to within arithmetic errors). The disadvantages are (i)

the physical significance of the updated parameters is not conserved, (ii) the final mass
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e
e
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o
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and stiffness matrices often do not resemble the correct mass and stiffness matrices and, in

fact, physically unrealistic coupling often occurs, and (iii) both mode shape and frequency

LA E'.

measurements are required.

CANRAS

F1iN

EXAMPLE 9: Berman’s method is used to identify the mass and stiffness matrices of
the following planar structure. Code (LPM/RMP/D,D,B,])

T E
PN

AR

et

Figure 13.  Spring-Mass Model of Truss Cell. &
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_In the structure above, there are two degrees of freedom per mass (z;, y;). The eight total

degrees of freedom consist of three rigid body modes (X,Y,8) and five elastic modes. The

true mass and stiffness matrices are given below.

M=mI

r 2 0
0 2

-2 0
_kj o o
T21 0 0
0 -2

0 0

L0 0

where m = 100, and k = 36.

-2 0
0O O
3 -1

-1 3

-1 1
1 -1
0o o0
0 -2

0O o0
0 -2
-1 1
1 -1
3 -1
-1 3
-2 0
0O O

To simulate an approximate model the mass matrix is increased by 10% and the

stiffness matrix is decreased by 10%. The first four elastic modes from the true model are

used as measurements for correcting the model. The resulting corrected mass and stiffness

matrices and the corresponding frequencies are given below.

[104.12
—0.88
2.87
213
2.13
-2.13
0.88
L 0.88

[ 35.56
—0.45
~34.91
~1.09
-1.09
1.09
0.45

L 0.45

-0.88
104.12
-2.13
2.13
2.13
2.87
0.88
0.88

-0.45
36.56
1.09
-1.09
-1.09
-34.91
0.45
0.45

2.87
-2.13
105.88
~0.88
-0.88
0.88
2.13
2.13

-34.91
1.09
51.38
-15.38
~15.38
15.38
-1.09
-1.09

2.13
2.13
—0.88
105.88
0.88
—0.88
-2.13
2.87

-1.09
-1.09
—-15.38
51.38
15.38
-15.38
1.09
—34.91
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2.13
2.13
-0.88
0.88
105.88
-0.88
2.87
-2.13

-1.09
-1.09
—15.38
15.38
51.38
~15.38
-34.91
1.09

-2.13
2.87
0.88

—-0.88

—-0.88

105.88
2.13
213

1.09
-34.91
15.38
-15.38
—15.38
51.38
-1.09
-1.09

0.88
0.88
2.13
-2.13
2.87
2.13
104.12
—-0.88

0.45
0.45
-1.09
1.09
—34.91
-1.09
35.55
—0.45

0.887
0.88
213
2.87
-2.13
2.13
—-0.88
104.12 J

0.457
0.45
-1.09
-34.91
1.09
-1.09
—-0.45
35.55
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Table 20.  Estimated Frequencies (I): Spring-Mass System.

i
i 1R TRUE VALUE INITIAL VALUE CORRECTED VALUE
' (rad/sec) (rad/sec) (rad/sec)
4 0.45922 0.41538 0.45922
S5 0.84853 0.76752 0.84853
. 6 0.84853 0.76752 0.84853
; 7 0.84853 0.78752 0.84853
8 1.10866 1.00282 1.00282

The corrected mass and stiffness matrices, being fully populated, do not resemble the
true model even though the first four elastic frequencies agree exactly with the measure-
ments. The last frequency does not agree with the truth because this frequency was not
used as a measurement. In fact, the initial value for the frequency was not improved at all.
Another point worth mentioning is that a completely different corrected mode! would be
obtained if the initial approximate model was chosen differently even though, again, the
frequencies (and mode shapes) from the newly corrected model would exactly match their
measured counterparts. In view of these results, it is wise to use great caution when em-
ploying this method. Although the corrected model frequencies agree with their measured

values, a forced-response analysis of the identified structure would be quite inaccurate.

In an approach similar to Berman's method, Chen et al [174] utilize matrix pertur-

bation theory to improve initial mass and stiffness matrices. In this method the mass and

‘I T XYL UG Y VRV C AU LE R RS T

stiffness matrices and the eigenvector and eigenvalue matrices are expressed as follows

3

[ M=M,+cMp (330)

o .
v

4 K=Ks+eKp (331)

. '
Cr S AR IR ST T TR A Y T WA BT AD IS M THWMC A, AT LT AA A U W LA A AN PSS L LA LA LT WK R

=04+ edp (332)
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O0=0,+e0p (333)

where subscript A refers to the initial values, subscript B refers to perturbed values, and
¢ is a small perturbation. By substituting (330) through (333) into (321) and (327) the

perturbed mass and stiffness matrices become

eMp = M3 4(2] — 3TMA® — DT ML ,4)0T M, (334)

€Kp = Mpa®4(20,0 — LK, — 8TK,04)0 M4 (335)

Similar to Berman's method, there is no iterative process used (in Chen's implemen-
tation) for this method although the improved model does not predict the measured mode

shapes and frequencies exactly.

EXAMPLE 10: Using Chen’s method, the structure of Example 9 is identified using the

same true model, approximate model, and measurements. The corrected mass and stiffness

matrices and the corresponding frequencies are given below. Code (LPM/RMP/D,D,B,I)

[ 126.78 8.72 -20.02 -30.04 685 -11.96 -3.6. 38.28 7
8.72 14661 -11.96 -860 -39.42 -39.85 42.66 11.84
-20.02 -1196 128.68 36.38 -5.51 10.62 6.85 -35.04
M= -36.04 -860 36.38 166.50 -11.75 9.94 10.40 -57.84
685 -39.42 -551 -11.75 155.42 40.76 —46.76 10.40

—-11.96 -39.85 10.62 9.94 40.76 148.51 -39.42 -8.60
-3.61 42.66 6.85 1040 -46.76 -39.42 153.52 -13.64
[ 38.28 11.84 —-35.04 -57.84 1040 --8.60 -13.64 164.60
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[ 49.22 524 —48.57 -23.10 1.58 -4.59 -2.23 22.451
5.24 6090 -459 -T7.53 -25.68 -60.25 25.03 6.88
—-48.57 -~459 6504 6.63 -18.05 21.06 1.58 -23.10
K = -23.10 -7.53 6.63 87.32 7.88 -—-8.94 8.59 —70.85
- 1.58 -—25.68 -18.05 7.88  80.80 9.21 -64.33 8.59
-4.59 -60.25 21.068 -—8.94 9.21 76.72 -25.68 -7.53
-2.23 25.03 1.58 859 -64.33 -25.68 64.98 -T7.94
L 2245 6.88 -23.10 -70.85 859 ~7.53 -7.94 71.50

Table 21. stimated Frequencies (II): Spring-Mas te

0, TRUE VALUE INITIAL VALUE CORRECTED VALUE
(rad/sec) (rad/sec) (rad/sec)
4 0.45922 0.41538 0.46141
5 0.84853 0.76752 0.79915
6 0.84853 0.76752 0.79915
7 0.84853 0.76752 0.85258
& 1.10866 1.00282 1.00282

The corrected matrices are farther from the truth than the initial approximate model
even though the first four elastic frequerncies are improved. I[n a variety of other applica-
tions, one finds that neither Berman’s method or Chen’s method is reliably “better” and
it is apparent that valid results using either method typically requires (i) a very good
a priors approximation and (ii) use of forced response measurements to confirm and/or

further modify the estimated system matrices.

{f there is no approximate mathematical model available for the structure, or if .he
model is deemned unsatisfactory, the elements of the mass, damping, and stiffness matrices
(or the state matrix) can be identified if sufficient measured data are available. Rajaram
[175], Rajaram and Junkins [176], and Hendricks et al [177] use a set of forced response
measurements of displacements, velocities, and accelerations to determine the elements of
the mass, damping, and stiffness matrices. For a force vector of dimension less than the

order of the system, the equations of motion can be written in the partitioned form
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M7, M,,] [z,] * [D{, D,,] [z,] M [K,T, Kn] |z = |0 (336)
where the mass, damping, and stiffness matrices are of order n x n and the configuration

vectors z; and z; are of order ny x 1 and n3 x 1 with (n; + n3 = n), respectively. To

obtain the elements of the matrices the first equation of (336) is rewritten as

T ORER N

-Mll-
Dy,
o | B - (537 3
o .
LK, | o
'\‘::

:._(_-

If (337) is sampled at discrete times (¢, t3, *-+, t,y ;m > 3n) then an overdetermined

set of equations can be obtained. However, these equations cannot be solved because the

X X

resulting matrix of measured responses ie rank deficient. As can be seen from the second

equation of (336), Z; can be written as a linear combination of %;, z;, z, Z2, and z3.

A

To alleviate this problem M); must be known a priors. This condition will be satisfied if

the mass matrix is confidently known or if the mass matrix is diagonal (M2 =0). Then

NMAAD XY

DAY gl LT RIS £ Y o LY

the equations can be written as

AP=U (338)

where the jth r~v of A is

[27(¢) 27() =T(e) 25(ty) 2f(ey), (339)

LIk s

the jth row of U is

LT (t5) - 23 (6;)MD ), (340)

SALA S LI
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and the P matrix is

P= Ky |. (341)

The elements of F can now be determined by the least squares method. The elements

of M3a, D23, and Kj; can be obtained by solving the following equations

Mai; M, S
Dag | =~ iV ] Du (342) .
Ka3 Ky

[B]

where the jth row of B is

EATREA A (343)

and the jth row of V is

M e A . L, E Y
b AR e

(2T(t;) 2T(e;) =T(,)) (344)

AN

o

o
»

AIRARRAANE EEAAAATCI), BRRIERY st CAAARAN o (1"

"-'4 £

Equation (342) can be obtained from the second part of (336). As observed in the
above formulation, the order of the system is determined by the number of sensor locations

available on the structure.

EXAMPLE 11: Rajaram’s method is used to identify the mass and stiffness matrices
of the structure in Example 9. Code (LPM/STH/D,D,B,])

The configuration vector takes the form

[z]r=[zl Y1 Zi1 Yi Za Ya x4 1/4]
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and the force vector becomes

NT=1h fa fs fo s fo f1 fs)

To excite all of the modes of the structure, an ON-OFF type forcing history, as shown

below, is used [177].

th
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Figure 14.  Square-Wave Forcing Function.

The amplitude, f, and the period, T, of each force are given by s

fi=10N E-;

T;=4n/(s+1)sec 1=1,2,3,---,8

" .r".v.' SIS S
AN A

(NN

Using a set of simulated noise-free measurements, taken at one-second intervals for

thirty seconds, the following mass and stiffness matrices are identified:

)

) SR

"100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07
0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0
M = 0.0 0.0 00 100.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
L 00 0.0 0.0 0.0 0.0 0.0 0.0 100.0.
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~ 36.0 0.0 -36.0 0.0 0.0 0.0 0.0 0.0
0.0 36.0 0.0 0.0 0.0 -36.0 0.0 0.0
-36.0 0.0 54.0 -18.0 -18.0 18.0 0.0 0.0
K= 0.0 00 -180 540 180 -18.0 0.0 -36.0
0.0 00 -18.0 180 540 -180 -36.0 0.0
00 -360 18.0 -—-18.0 -—18.0 54.0 0.0 0.0
0.0 0.0 0.0 00 -36.0 0¢ 36.0 0.0

L 0.0 0.0 0.0 -~36.0 0.0 n.0 00 36.0J

By comparing these results with the true matrices given in Example 9 it is observed
that the mass and stiffness matrices are very accurately identified. It has been found
that the numerical conditioning of this method is heavily dependent upon the frequency
content and linear independence of the excitation forces. Typically square wave bang-
bang excitation is adequate, but broad-band random excitation may be preferred for large
complicated structures with a dense natural frequency spectrum. Of course, experience
with reductions of synthetic data from a fixed- order discrete system (as in the preseat
example) does no! readily extrapolate to applying this approach to fit the response of a

high order system by a low- order model.

The method described above does not utilize any knowledge of sparsity which might
be present in the matrices (i.e. banded matrices). Also, the symmetry of matrices M,;,
Di;, and K;; for (i = 1,2) is not accounted for. The most computationally efficient
method would be one which utilizes all a priori knowledge of the elements of the matrices
to reduce the dimensione of the unknown parameter vector, and to make the estimates

consistent with the mathematical model of the system.

An interesting and enlightening theoretical discussion on the identifiability of the
elements of the mass and stiffness matrices and the state matrix is presented by Sirlin

et al [181]. Necessary and sufficient conditions on the number and placement of sensors
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and actuators are determined which insure identiflability of conservative linear mechanical

systems.

6.3 Determination of Spatial Models From the Frequency Response Function.

As mentioned in Section €.2, the use of frequency response measurements for Bayesian
estimation of physical parameters of a structure has seen some application (Refs.[32],[183]-
[187]). In this section two closely related methods will be examined for identifying the
elements of the mass, damping, and stiffness matrices (in the form of submatrix scale fac-
tors) using frequency response measurements, eigenvalue/eigenvector measurements, and
the Spectral Decomposition Theorem as given by (120). The difference in the two meth-
ods lies in the availability of modal measurements and frequency response measurements.
In the first method it is assumed that m < n eigenvalues and eigenvectors have been
determined (e.g. the methods discussed in Section 5} and one element of the frequency
response function has been measured throughout the frequency range of interest. The
second method does not require a priori eigenvector measurements but does require the
measurement (or estimation) of one complete column (or row) of the frequency response
function. Before continuing with the details, it is necessary to establish the following no-

tation, The classical (n) second- order equations of motion can be written in the (2n)

symmetric first-order form

([

where

-K 0
A= ]

0 K
2=k B}
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The 2n eigenvalues and eigenvectors, occurring in complex conjugate pairs, take on

the form

Aj = 05 + twy, X;- = 0; — twy (346)
=] % $ = j = )

where o; is the jth damping factor, w; is the jth natural frequency, and @, is the jth

displacement mode shape. The 2n x 2n modal matrix is now defined as

O=[&l &, - b, i & & ... &;]- (348)

Investigating the first method more closely, the spectral decomposition of the measured

FRF element, H jk, can be written (for the general viscous damping case) as

f{,'k(:'w)=f:}’(iw)+ 2": Y (iw) (349)

r=m+1

where

: $,. b L3
Y(iw) = L0 L
Ww=-2A, tw=-A

and

: the highest frequency mode within the frequency range of interest

3

Sor

¢ the rth measured eigenvalue

é,'.. : the jth . pponent of the rth mode shape.

The matrix equivalent of (349) is given by {120). One problem implici¢ in (349) is that
the mode shape, ®,, must be normalized with respect to the true (unknown) A matrix

(see (345)), whereas the measured mode shapes, defined as 1), , will not be normalized in
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this fashion. The other problem is that eigenvalue/eigenvector measurements will usually
be incomplete, measurements being available only for m < n modes. It is therefore
necessary to make some approximation to (349). Motivated by Ewins (29],(182], (349) is

approximated as follows

- a1 o~ ¥irth b;, i
Hiyp(iw) > — + (—’—r—z'—‘y + == ')+a 350
s (i) w ; w— A, g iw—z\;"r ? (350)

where a; and a; are complex constants and the 4's 'are scale factors which normalize the
measured mode shapes (d;,\/'y_,. = 6,). (Ewins chooses to combine the terms in the sum-
mation and, therefore, obtains a different form of (350)). The first term of (350) represents
the contribution from any unmeasured rigid-body modes (obtained by setting X, to zero in
the summation). The last term represents an approximation for the contribution of unmea-
sured hi.gh-frequency modes (A, > w). To determine the unknown constants (a1, az, v's)
(350) is “sampled” at different frequencies distributed throughout the frequency range of

interest. The resulting set of equations becomes

BaGe)] [ L In o L L Ls o Lie 1] o)
H,';.(i(d;) Twa Ly Lza -+ Laim L;l L;z vee L;m 1 4
: = ~*
Hix(swn) :’L; Lvy Lna -+ Lnm Ly Lia - Liym 1 °: )
351

where the definition

L. = 'J’jq'sbk.q L* = ¢;i¢;q

is used, A least squares solution of (351) yields estimates for the unknown constants.

If there are no measurements assumed available for the eiganvectors, then (350) must

be modified as follows
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Hj(iw) = :ul) + 2 (,‘ 'i!i + iu: —1}‘> + a3 (352)

ral

where .I'jx are the to-be-determined “modal constants” [182]. A least squares estimate

can be obtained for the modal constants as described above. The desired normalized

eigenvectors are obtained from the relationship
rrjk = &jr&kr- (353)

It now becomes evident that the price which must be paid for not using measured
eigenvector data is that at least one complete column (or row) of the frequency response
function must be measured in order to obtain the m normalized eigenvectors. The point

frequency response measurement, Hik, is used to determine the kth component of each

eigenvector,

Hxx = 1\Tkrs alhies =+ mDTka]

. R . (354).
- [Qzli Q:h B lecm]

The remaining transfer response measurements, H sk, are then utilized along with the

results from (354), to determine the remaining components of the eigenvectors,

Hjx — [yT5k, aljk, -+ mDja]
— 918k, Bj20k3, -+, EimPim]- (3585)
— (®;1, Bj2, -+, &jm]
Once the normalized eigenvectors have been obtained, whether from the scaling factors
of (350) or the modal constants of (352), the spatial model of the structure (the mass,

damping, and stiffness matrices) can be identified. First it is obvious that if the full 2n x 2n

modal matrix of (348) has been obtained then the A and B matrices can be identified
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(and, therefore, the mass, damping, and stiffness matrices) by using the orthogonality

relationships
$TAG =1 (356)
$TBd = —A = —diag();) (357)
to obtain
A= To! (358)
B=-$"Trd", (359)

In the more practical situation of having m < n eigenvalues and normalized eigenvec-
tors the submatrix scale factors can be utilized, as defined in Section 6.2, (314) and (315).
In this case, the orthogonality conditions of (356) and (357) can be expanded, using the

definitions of A, B, and b, , to obtain

Fou“
Q3z

. 61
[ ®T(—A2M; + Ko)®, +1 ] _ [ y B2 (360)

where
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and ag, Bi, §; are the mass, stiffness and damping scale factors, respectively.

Collecting the set of the above equations for each measured eigenvalue provides a sys-
tem of equations to solve for the scale factors. The advantages of this method are that the
parameters are contained linearly in the equations, eliminating the need for a good initial
model, and the consistency of the criginal model is maintained, yielding no unmodeled
coupling due to the identification process. Since (350) represents an approximation to the
frequency response function an iterative procedure can be used, whereby the unmeasured
eigenvalues and eigenvectors are predicted (using the present best estimate of the system
parameters) and used in (350) in lieu of measurements. The process converges well if the

actual system is represented satisfactorily by the first estimate of the system.

For high-dimensioned and/or poorly conditioned problems, it is anticipated that the
replacement of least- squares and matrix inversions by judicious solutions via singular value

decomposition will prove constructive.
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SECTION 7. SYSTEM CHARACTERIZATION
AND NUMERICAL ASPECTS OF IDENTIFICATION.

This section will discuss some of the problems associated with the parameter esti-
mation or system identification task with primary emphasis of identification of on-orbit
space structures. The emphasis of this section will be on the continuous-discrete time rela-
tionship, the distinction between some continuous and discrete time algorithms, optimum
input test signals, optimum actuators and sensor locations, optimum sampling rates and
uncertainties in system modelling and system inputs. There will be no attempt to discuss
the exact mathematical formulation of the various parameter estimation or identifcation
algorithms. The discussion will be limited to underlying mathematical principles that

affect the algorithms in a rather superficial sense.
7.1. Continuous Versus Discrete Time Systems.

The identification of a system generally deals with discrete data rather than continuous
data. It is therefore necessary to understand the mathematical basis of discrete systems.
There is a limited number of algorithms that will identify a system in the continuous
domain as opposed to the discrete domain. One of these algorithms is the quadrature
method described in Bellman, Kalaba and Lockett {188] which requires that the data be
sampled at specific times which are not equispaced. Since data is usually collected at
equispaced times, the general theory of discrete or z- transforms should be utilized in the
identification task. Most of the currently used algorithms are of the discrete formulation.
Among the widely known algorithms are the Fourier transform spectrum (FFT) [106], the
minimal realization (ERA, Kalman-Ho) [189], the maximum likelihood estimator (MLE)
[190], the auto-regressive moving average (ARMA) [191], the lattice filter (LF) [192], the
Prony method (PA) [193), the instrumental variable method (IV) [194) as well as extensions

and variants of these algorithms. Extreme care must be taken to properly formulate the
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problem in the discrete domain. The questions of parameter sensitivity in the discrete
domain must be addressed with discrete mathematics, z-transforms in the most general
case. [t is not the intent herein to discuss the various algorithms but to discuss some of
the limitationa such as computational load, model parameters, conputational errors, and

other precautions in applying discrete algorithmas to obtain continuous model parameters.

One of the major problems encountered with most of the algorithms devoted to pa-
rameter estimation is that the time functions between sample time are unknown but the
functions are generally assumed to be slowly varying with the discrete data at the sam-
pling time kT as an approximation to the actual functions. This means that frequency
contents higher than the sampling frequency are subject to being lost or distorted in the
sampling process. This limitation implies that the data is a zero-th order approximation
to the actual function with the data assumed to be constant between samples. The data
does not take into account first and higher order derivatives of the function. In addition
to the above limitation, the A/D sampler used to collect the actual data has a [sin(z)|/z
frequency distribution, thus, the actual data will be distorted in the frequency domain and

the system parameters for the high frequency modes will not be true parameters.

In the task of structure identification from the continuous domain the spatial dis-
cretized model] is utilized with the Laplace transform of the displacement equation having

the form

(Ms’+Ds+ K| X(s) = BF(s) (361)

with B the input force matrix and F(s) the Laplace transform of the force acting on the
structure. The structure matrices, M, D, and K, are n x n matrices where n may be

as large as 1000. The structure will have at least 2n vibrational modes. The bracketed
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term on the left side of (361) is a matrix polynomial frequently called a lambda matrix.
The transfer function for the displacement can be obtained from the equation
X(s) = [Ms*+Ds+ K| F(s). (362)

The measured response is then given by

Y(s) = C X(s) (363)

where C is the measurement matrix for the structure. The initial conditions on (362) have
been set to zero. In addition to the matrix polynomial characterization given abaove, the

system can be given in the state variable form with

X(s) = [f&g;] = [MiI‘K aI+,-A;“D]_1[M9‘B]F(’) (364)

where X(s) is a new vector with the Laplace transform of z(t) and the derivative of z(t)

as its components. The compact notation

X(s) = Als) F(s) (365)

can then be used for (364) without loss of generality. The measurement vector is given by

(363) with the new definition of X(s).
The discrete versions of (361), (362), (363) and (364) are obtained by first taking the
z-tranaform of the matrix polynomial of (362) with a zero- order-hold or
X(z)=(1-2"")2Z[s""(Ms® + Ds+ K)™'| F(2) (366)

where Z indicates the z-transform of the enciosed quantity. The equation in (366) can be

rewritten in compact form as
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X(x) = N(9)] d(=) |~ F(s) (367)

where the left-hand polynomials are the results from the z- transform operation. It then

follows that Y (z) is defined as

Y() = C X(2) (368)

where X(z) can be written as in (365) but where X(z) is the z-transformed equation of
(362). Equations (367) and (368) have M, D, and K imbedded in the equations in some

complex form which is not a simple matter to unravel.

The Bellman, Kalaba and Lockett procedure for identification is one of the few meth-
ods by which the structure in the s-domain can be identified. The method uses the discrete

quadrature summation

N
Yis) = Twi e y(ty (369)

i=1
where y(t;) is the measured response, w; is the sth weight function, and ¢, is the ith
zero of the shifted Legrendre polynomials Py(t). The algorithm gives the values of Y (s)
at finite integer values of s but does not allow for the selection of optimum equispaced
sampling times which will probably be necessary for large space structures due to the
large dimensions of the problem. The mass, damping, and stifiness matrices must then be
obtained from Y(s). Numerical experiments indicate that this algorithm suffers from the
failure to use optimal sampling as well as being sensitive to noise and round-off errors due
to finite word length. The quadrature method does not give accurate numerical Laplace
transforms when the time function is lightly damped. Thus this procedure will not be a

valid candidate for structure identification.
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There are some researchers who use the Fourier transform to carry out system identi-
fication but here again the process is discrete if one uses the fast Fourier transform (FFT)
as this task computes the spectrum from discrete data. Although the FFT is quite efficient
in analyzing the data to determine frequency contents, it can be shown that the process-
ing of the frequency spectrum data to identify system parameters is computer intensive
requiring a considerable number of multiplies and divides. Any efficiencies gained through
the FFT processing are lost in the final computation of the systera parameters. There is
the additional limitation that it is difficult to separate closely spaced modes of the system,
particularly when the eigenvalues of the system have small real parts. Such modes of the
system are lightly damped ard are generally difficult to identify as there is an overlapping

of the frequency response curves for the individual modes.

The discrete algorithms that are the most frequently discussed in the literature are
the ERA, (Kalman-Ho), the MLE, the ARMA, the lattice, the Prony, the instrumental
variable, and the adaptive estimator. Each of these methods utilizes modified forms of the

discrete model with the input- output relationship having the form

A(z"Y) Y(2) = B(z7!) F(2) (370)

where A(2~!) and B(2~!) are the parameters of the system obtained from the z-transform
of (364) or directly from (366). One of the difficulties of the identification task is that
of unraveling the identified matrix polynomial A and B to obtain the mass, damping
and stiffness matrices. Insufficient work has been carried out on discrete z- transforms
polynomials of second or higher order to fully understand the make-up of A and B in
terms of M, D, and K. Matrix polynomials, or lambda matrices have been studied
extensively and the properties of these functions are known but the z-transform properties

of matrix polynomials are not well understood.
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The ERA model takes the z-transformed discrete state variable form given in (364).

‘This form can be manipulated for the identification task to obtain eigenvalues of the

discrete state matrix which are identical to the discrete latent roots of the discrete lambda
matrix associated with (366). The system eigenvalues close to unity are difficult to compute
accurately since the eigenvalues of the discrete state matrix are of the form exp (p;T) where
T is the sampling time and p; is an eigenvalue of the system. If the product p;T is close to
zero, small errors can lead to large errors in the computed values of p;. The sensitivity of a
structure eigenvalue is quite high for discrete eigenvalues close to unity. The computations
of the mass, damping and the stiffness matrices can be carried out if the eigenvalues (latent
roots) and the eigenvectors (latent vectors) of the state matrix are known, although there
are still some difficulties on the interpretation of the structure of the state matrix. An
associated problem is that of dimensionality, The “curse of dimensionality” in this case
differs from that of dynamic programming where it is associated with memory. In the
identification problem it is that of numerical accuracy when a large number of modes
are present in the system response. Insufficient data exists to fully analyze the numerical
errors encountered when a large structure and a large number of modes are to be identified.
Methods to circumvent the dimensionality problem when the ERA method is utilized will
most likely be found but the method must mature before the computational problems are
solved. Clever ways of combatting numerical errors for large structures must be devised

prior to applying most identification algorithms to vibrational problems.

The maximum likelihood estimator (MLE) would appear to be a suitable candidate
for the estimation task since the method does not depend on having a full characterization
of the noise. The algorithm provides a means of computing the covariance of the noise but
the difficulty with the method is the number of computations required. The algorithm is
iterative with an update provided on the covariance at each iterative stage. The added

covariance computations, along with the identification computational load, places a rather
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large computational burden on the digital machine when this algorithm is implemented.
As in all discrete- time formulations, the continuous parameters must be computed from
the discrete- time data. If the system noise is Gaussian with mean zero value, the MLE

and the LS algorithms will be identical.

The ARMA model is quite popular in adaptive estimation as well as for adaptive
control. Since it is not necessary to compute exact model parameters but only to provide
control signals, the adaptive algorithm has found favor with researchers involved with
devising control algorithms. One advantage of the adaptive type algorithms is the ability
to carry out the parameter estimation on-line in real time provided that a fast digital
machine is available. Data available in the literature suggest that the adaptive algorithms,
whether for estimation or control, are limited to systems of small order. Literature on the
use of these algorithms for systems of order ten or higher is rare. This type of algorithm
will probably be limited to those problems where the number of unknown parameters
is small and exact system parameters are not necessary but only approximate selected
parameter values sufficient to provide control are needed. Even though the shortcomings
of the adaptive type of algorithm may be, the identification of the system parameters still
involves transforming the discrete parameters to continuous parameters before the mass,

damping and stiffness matrices are identified.

Most of the other algorithms mentioned above suffer from the limitations stated in
the previous paragraphs. Exact knowledge for transforming the discrete time parameters
obtained from the discrete data to the mass, damping, and stiffness matrices is lacking for
large structures. In addition to this problem or limitation, the numerical errors from a
finite word length and the dimensionality of the structure may be rather serious. Many of
these problems can be circurcvented by providing distributed computations either onboard
the space structure or in the computational center that processes the data coming from

the structure. Numerical algorithms for accurately substructuring the computations do
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not exist at the present time other than in a information flow sense. There is also the
outstanding question of how well the structure must be identified for control of vibrations.
The exact task that the space structure is performing as well as the materials utilized in

the structure will no doubt be a major factor in the parameter estimation task.
7.3. Optimal Input and Sampling.

In order to limit the amount of data that must be processed in the identification
problem as well as providing some checks on the numerical errors, the identification task
should be carried out with an optimal input signal and optimal sampling rates. The input
signal should excite all of the vibrational modes of the structure and all of the natural
modes of the structure should be observable if the structure is to be identified. This
means that the system must be controllable as well as observable. Controllability assures
that all of the modes will be excited whereas observability means that the output data
contains information on all of the vibrational modes of the structure. For the state variable

formulation of a linear time-invariant system the controllability matrix is

Q. = | BAB A’B... A""'B| (371)

whereas the observability matrix is

Q. = [CT ATCT (AT)2CT...(AT)™'CT | (372)

where the system triplet is (4, B,C|. The triplet in not known in the identification task

as it is the matrix triplet or some other system parameters that are sought.

The tnost general input signal to assure that all vibrational modes have been excited
is that of pseudo-white noise since pure white noise is only a mathematical abstraction.

White noise requires infinite power and is impractical. Pseudo-white noise will excite all

222




T AT RV B R S e - w - —

T LBV TID> T Em S eV COT VK "2 AL NGy 1 » ~

L L LA AAR e ) SIS

NN

<

of the modes of a vibrating structure provided that the sampling rate is sufficiently high
to place the folding frequency f, where f equals 3.14159 /sampling time, above the highest
mode of the structure. A high sampling rate is necessary if all of the modes are to be
identified; thus, the folding frequency restriction does not impose additional restrictions
on the sampling rate. The simplest pseudo white noise source to implement is that of the
maximum length null sequence (MLNS). This noise source is generated through the use
of a M-bit hardware shift register randomly loaded with zeros and ones. The contents of
the register are shifted to the right with selected bits of the register used in an exclusive
OR operation, denoted by &, to compute a new bit for location 1 of the register. The

feedback bit locations for shift register lengths of M=18 through M=24 are given in the

table below.
Table 22. Feedback Bits for Shift Register.

M Feedback Bits
18 7 & 18

19 12950 19
20 3 & 20

21 2621

22 1 22

23 5 & 23

24 1207024

It has been assumed that the register bits are numbered from left to right with the
lowest bit, 1, to the left and bit M to the right. If the shift register is M bits long then
the periodicity of the pseudo-white noise generated will be 2™ —~ 1 long. That is , the
bit pattern of the shift register will repeat iiself every 2M — 1 shift operations. Since the
hardware implemented shift register contains zeros and ones, the software implementation
would require replacing the base 2 numbers (0, 1) with -1 and +1. Floating point values
are generated by passing the binary bits through an optimally designed all-pass digital

filter. The output of the all-pass filter will be pseudo-white Gaussian noise with mean
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gero and variance set by the all-pass filter coefficients. The spectrum of the output of the

pseudo-white noise generator is given by

= n(2E)) 2 mn
ot = 24 3 Mt (E) ) 6002 (@)

where 8(w — 27 /NT) is the unit impulse at w = 2mmn.

One all-pass digital filter that is suboptimal is given by

W (k) =ao N(k) +ay N(k- 1)+ a3 N(k —2) + a3 N(k - 3)

+boy W(k—1)+by W(k—2)+bg W(k~3) )
where the numerical values of the coefficients are ag = 0.5828, a, == 0.8048, a; = 1.1900,
and az = 1.0000 with b, = —ag, by = —a3, and b3 = —a,. W(k) is the generated
pseudo-white noise in floating point numbers, N(k) is the contents of one cell of the shift
register. The four values N(k), N(k - 1), N(k — 2) and N(k — 3) should be taken from
any four fixed adjacent cells of the shift register, i. e. N(1), N(2), N(3), and N(4). The
all-pass filter may not be necessary if the binary values are passed directly to the force

transducers. The MLNS noise source is described in Graupe (114 as well as in several

other references. The weighting coefficients for (373) were found by Rowe and Kerr [195].

The optimal sampling rate is quite important if a minimum amount of data is to
be manipulated in the identification process. The selection of the sampling rate is also
important in assuring that all modes of the structure are observed. There are two methods
of selecting the sampling rate. The first of these is to compute the Fisher information
matrix from several choices of the sampling frequency. This method is a not a viable
computational means of establishing the optimum sampling and the method must generally
be replaced by a simpler method. Let Q, be the observation matrix and Q. be the
controllability matrix. Let H denote the Hankel matrix with H = [QT Q.| from which

it follows that the optimal sampling rate can be computed by selecting a sarnpling time
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T such as to maximize the determinant of H. Since the observability and controllability
matrices cannot be determined reliably a priors, the Markov matrices of the output data
must be used in place of the Hankel matrix. This matrix is the same one used in the
ERA or Ho method. The procedure to determine a near optimum sampling rate is to
collect data for several sampling times, form the Hankel matrix for each sampling time
and then determine the best sampling time by using a least squares method to determine
the sampling time dependency from the maximum determinant fror the series of Markov

matrices. Although it will not be possible to determine the exact optimal sampling time

by this procedure, the determined sampling time should be suboptimal.

7.3. Parameter Sensitivity to Word Length and Bias.

One of the key unanswered questions in parameter estimation is that of parameter
sensitivity to changes in the input-output data and numerical accuracies. There has been
very little work on this topic and yet the resolution of the question on which algorithm
is the most effective in a numerical sense depends on the sensitivity. It would be foolish
in system design work to select the design which is most sensitive to component changes
or digital word length. To illustrate the sensitivity issue, sensitivity of digital filters to
computer word length has received attention and it is widely known that the parallel
implementation of a digital fllter is less subject to round off errors due to the digital
word length than is the cascade design. There is also some evidence to show that a
lattice filter is even more insensitive to word length than is the parallel implemented filter.
Research on parameter sensitivity has been limited and since this report has to be written
from the “state-of-practice” viewpoint, there is insufficient time to address this aspect of

identification. The sensitivity question will be placed in the category of future research

problems for the identification of large space structures.

225

g

<

S -4

o

e

S SR T A O e O W IS AR PR O

A | AP P N

bl AL DL I IR

P Rl



It is well known that certain estimation algorithms are biased and the resulting param-
eters will be dependent on the amount of the bias. It therefore follows that the unbiased

estimator would be preferred when all other disadvantages are equal. The least- squares

PPN s s SWITWET T PSS

algorithms tend to be biased estimators whereas the instrumental variable algorithm is Eﬁ
unbiased. The literature on identification addresses this issue although the bias- sensitiv- 3?
ity combination has not been examined. Attention should be given to this aspect of the Q'E
identification problem. ,%:
o

7.4. Optimal Actuator and Sensor Locations. ::
Be

The placement of the force transducers on the structure also plays a role in the ex- 'CF
citation of the structure modes. The optimal placement of the force tranaducers would :\

require a minimum number of inputs to the structure as well as a minimum number of
transducers on the structure. Optimal placement of the motion sensors would minimize
the number of measured values to handle in the parameter estimation algorithm. There
is a problem with the placement of a minimum number of transducers and sensors such
that each transducer and sensor is optimally placed since this implies that the structure

is known a priori. Determination of the optimum location of the force actuators and

LA TN AR SN T N

the motion sensors is not a simple task. The problem of locating the motion sensors has

»° 2

been addressed by Udwaida, {196],28]. These papers utilize the cavariance matrix of the

‘ﬂﬂ{

parameter estimates to determine the sensor locations.

A

In order to excite all vibrational modes of the structure the controllability matrix
should te of full rank. The problem with this is that the number of modes or the rank
of the controllability matrix will not necessarily be available. A priors information for the
rank of the controllability matrix as well as the parameters of the controllability matrix
are not known. Similarly, the observability matrix must be of full rank but here again,

sufficient information does not exist on the rank of this matrix. The only information
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available a priori is the input- output data from which the Markov matrix can be con-
structed. The rank of the Markov matrix is generally a measure of the number of modes in
the system. The rank of the Hankel or Markov matrix can be determined by the singular
value algorithm (SVD). The question then arises as to what singular value of the Hankel
or Markov matrices implies usable data and what value indicates measurement or system
noise. It is probably not possible to determine the exact rank of the system or to deter-
mine the optimal sampling time or the force-sensor locations for a structure. The best
that can be done is to determine a suitable value for each and then to use these values
in the identification algorithm. This means that optimal location of the actuators and
sensors from state-of-practice algorithms cannot be determined, all that can be achieved
is to determine an approximate location for the components. A structure actuator-sensor

location algorithm needs to be devised that will place the actuators and sensors in a near

optimal sense.

7.6. Frequency Response of Force Actuators, Sensors and Samplers.

The input-output data which will be utilized in the model identification will be subject
to the transfer functions of the forcing and measurement devices on board the structure.
None of the devices are ideal with respect to frequency response and therefore impose
“distortion” factors in the identification task. The frequency distortion effects of the force

actuators, the motion sensors and the A/D samplers must be corrected in the various

perameter estimation algorithms.

The transfer functions of the actuators and the sensors will depend upon the design
of the particular device. The transfer functions of these devices can be measured in the
laboratory by sinusoidal testing and the frequency responses obtained. There is no reason

to believe that the frequency response of the devices will change on-orbit other than perhaps

a scaling of the frequency response magnitudes.
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The frequency response of the sampler, A/D converters, is known, as it is the response

of the zero-order-hold (ZOH) circuit. The transfer function for the ZOH is given by

i 1 - ~aT
a Tzou(s) = [——E—J (375)
where T is the sampling time and s is the Laplace transform variable. Substituting s = jw

in (374), the magnitude response is found to be

T sin(wT/2)

T3] (376)

Y
N |Tzou(w)l =

whereas the phase response is

-wT

- ®zonw) = —5— (377)

The magnitude response is periodic with period of /T and has a value of T at w = 0
and 0 at w = 2n/T. The folding frequency, that frequency about which the magnitude

response squared is periodic and symmetric, is wp=n/T.

: The frequency and phase response distortion due to the sampling can be removed by
‘ applying a numerical inverse filter whose frequency and phase response is the inverse of the
A/D sampler. Extreme care must be taken in the implementation of the inverse filter as it
may be numerically unstable. Since the sampling frequency should be twice as high as the
frequency contents of the measured data, the inverse filter can be cutoff at approximately

8 three-fourths of the sampling frequency.
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"SECTION 8. COMPUTATIONAL AND DATA ACQUISITION ISSUEES.

The parameter estimation problem to be implemented depends on the selection of
good software codes which are efficient and accurate. The selection of the code to be
utilized will partially be determined by the existing hardware available for running the
code. In addition, the collection of data for the parameter estimation task will be an
integral part of the requirements on the software code. The hardware may be located on
the ground, partially on the space structure, or totally on the structure. There will .be
different requirements for each of these hardware configurations. If the hardware is on the
ground, the force and displacement data must be collected on the structure and then sent
to the ground hardware site. In contrast to off-structure hardware is the case where all of
the hardware is on the structure with all processing on the structure. These issues, as well
as some of the computational requirements, will be discussed in this section. Since the
hardware, computers as well as actuators and sensors, is constantly changing, the issues
addressed here are in line with presently available hardware and predictions that seem
to hold for the future. The views expressed here may change significantly with hardware
developments over the next vear or two. It should also be recognized that available funding
for hardware development can change in a drastic sense over a few years, thus enforcing

or voiding some of the comments in this section.
8.1. On-Orbit Versus Ground-Based Computations.

This section will address those issues of the identification task by considering some
of the hardware requirements for identification and the division of the hardware-software
directed aspects for realizing the goal of structure identification and control. Since the
structure is on-orbit, there is not a clear division of what aspects of the task will be carried
out on the structure and those that must be completed at the ground base control point.

These two subtasks of the identification phase will be denoted as either on-structure or
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off-structure, Although it may not be possible to place a large cotnputational facility
on the structure for every mission, there will be missions for an on-orbit structure which
may require that the mission requirements be carried out completely independent of ground
control. It is obvious that certain aspects of the identification process must be on-structure
whereas some other procedures may be on- structure or off-structure, depending on the
hardware requirements. For example, the force actuators and displacement sensors must be
on-structure. Some data transmission facilities must be available on-structure to preprocess

the acquired data for transmission to the off-structure facilities.

The generated data, force actuator signals, and the collected data from the motion
sensors, may be processed in real time or collected and then processed as batch data. The
computations in real time will be considered as on-line processing whereas the batch type
of processing will be classified in this report as off-line. Some of the issues for the on-line

vs. off-line computations will be considered in the following material.

8.1.1. On-Orbit Data Processing.

The computational task associated with on-orbit identification of structures can be
broken down into three hardware requirements: the on-structure excitation, measurements
and preprocessing, bidirectional data communication from on-structure to off-structure ,
and data processing in the identification algorithm. The on-structure hardware consist
of force sensors and motion sensors that have analog-digital conversion capabilities if the
data link is digital, as well as some computational facilities for preprocessing the data
to minimize the data communication requirements. In addition, it may be desirable to
generate on-structure the signal for the force actuators which excites the modes of the
structure. The data communication link will be necessary if there are insufficient compu-
tational facilities on-structure. The data link would send the on-structure information to

the off-structure processors for the identification algorithm. The off-structure computers
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would then process the down-link data to arrive at an acceptable model. It is assumed that
the control strategy and the associated algorithms are not to be included in the computa-
tions but this assumption may not be valid in a totally integrated on-structure computer

facility.

Although the data handling capabilities could be categorized as on-line vs. off-line,
it would seem more appropriate to use the on-structure and off- structure classification.
Rather th&n.use the above structure descriptors, the terms will be used interchangeably
with on-orbit and off-orbit facilities where on-orbit means on-structure and off-orbit means
off- structure. The computational task may be off-line, mweaning not in real time, or
on-line, which would be real time with the on-structure and off- structure computations
belonging to both types of computations. The on-line and off-line computational task
management will be discussed as a separate section. The reason for the structure division
of tasks is in keeping with distributed types of computers which are now possible with fast
microprocessors. It is now possiole to think of parallel computations in terms of distributed
special purpose computers at less cost than large general purpose computers. The on-orbit
structures could then have their own integrated identification-control algorithms on-board
with sufficient capabilities for control and identification of the structure for multipurpose
use. Present state-of-practice does not provide the ability to implement the identification
and control strategy described above but there do not appear to be limitations to this

state-of-art approach.

8.1.2. On-Structure Data Acquisition and Computer Requirements.

e
w

_‘:~.‘.
y .

The on-orbit structure will require some computationai facilities even though the task
to be performed may be rather simple. For example, assume that all force commands are »

transmitted to the structure hardware through the data link with the commands in digital (.

form. The incoming data must be translated for use by the force actuators to properly §
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excite the structure. The resulting motion from the forces is then measured by the motion
sensors and the measured data is then sent back to the off-orbit facility through the data
link. This hardware configuration: force actuators, displacement sensors, analog to digital
converters, and data link interface, is the minimum set required for parameter estimation.
Timing information for coordinating the sampling can either be provided from the on-orbit
or off- orbit haraware but it should be recognized that a time delay will be placed in the
data loop if the timing pulses are generated off-orbit. It would therefore seem appropriate
to generate the timing on-orbit with a submaster clock synchronized to the off-orbit master

clock,

The next level of hardware implementation would require the same hardware as de-
scribed but with several other simple tasks. The force excitation signal could be generated
on-structure and then sent to the force actuators. In addition the sensor outputs could
be collected at a central point for some preprocessing prior to placing the data on the
communication link. It may be necessary to prefilter the sensor outputs prior to send-
ing the data to the off-orbit facility. Suitable filtering algorithins can be implemented in

microprocessors on the structure.

There is no reason to restrict the preprocessing computations to prefiltering when
some of the computations assigned to the parameter estimation algorithm can be carried
out on-structure with microprocessors. The concept of decentralized control has been stud-
ied for several years and applied to large systems such as power control in electrical power
networks. There does not seem to be any major mathematical limitations which would
prohibit the extension of the decentralized concept to parameter estimation. The decen-
tralization concept is to perform some of the computations at localized computer nodes
in the network with minimum, but sufficient, information for system identification flowing
between the computer nodes. In the case of large structures on-orbit, local microproces-

sors could be implemented to collect data from a mathematically partitioned structure and
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processed for a subtask of the overall identification algorithm. The locally processed infor-
mation would be relayed to an on-structure or off- structure centralized computer facility
for final processing. The force actuators and motion sensors network would communicate
only with the subtask processors with the decentralized information flowing only between
the subtask processors and the final processor. Although the decentralized concept does
not fit into state-of-practice algorithms, it is strongly recommended that this concept be
studied, as it may be the only way to identify large space structures. The decentralized
concept is closely related to substructure modeling, partitioning of systems, or in a math-
ematical sense to parallel processing in state-of-art array processors. The identification
computer network could also be utilized for the control of the structure once the identifi-
cation task has been completed and would be vsell suited for adaptive identification and

control of multipurpose space structures.

Much of the hardware for the on-structure facility exists although there has not been
a major effort to catalog hardware components for on-structure applications. The only
cataloging effort known to the ASCE task force is the report by Charles Draper Labora-
tories supported by NASA Johnson Space Center with the results published in a report
[197]. The data published in that report are now out of date due to recent developments.
Force actuators using magnetic forces such as the ones developed for NASA Langley Re-
search Center by the University of Virginia [198] are probably state-of-art, although there
have been no published results on application to space structures. Motion sensors are
available for the on-structure sensing of the motion of the structure. The force balanced
integrated accelerometer developed by the Sandia Laboratories [199] would appear to be
the best candidate for the vibrational sensor. 'I'his accelerometer has a five-six decade
linear response range and can be constructed to have a very low threshold, on the order of
0.001g force. The accelerometer is a solid state device in an integrated chip package which

occupies a very small space and is lightweight. The accelerometer has three degrees of
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freedom output, thus one chip will measure acceleration along in the three reference axes.
Since the accelerometer is constructed on a solid state chip, there is no reason to believe

that analog to digital conversions could not be included in the design if it is not included

now.

Commercially available microprocessors with clock rates of 20 megahertz are now
available in sample lota. The clock rate of 20 megahertz will most likely be increased to 30
megahertz within the next two years [200]. Higher speed chips are also being developed
under the DOD program for very high speed integrated circuits (VHSIC) [201]. Special
purpose microprocessors with clock rates of perhaps 100 megaheriz will probably be avail-
able in the near future under this program. These clock rates, along with high density
ﬁlemory chips, would seem to indicate that on-structure 32-48 bits computers which are
lightweight and compact with throughput of 5-20 million floating point operations per
second (Mflops) and 20 megabytes of associated memory should be available within the
next 1-3 years. Hypercube computers with performance specifications of as high as 500
megaflops ere presently in the design stage. Computers with these performance specifica-
tions configured in a distributed network should have sufficient computer power to perform
most of the identification task on-structure with a small demand on the communication
link and the off-structure computer facility. The major drawback to these exotic machines
is the lack of software which will probably require several years to develop. Certification
of the high-speed microprocessors and associated chips for military space applications are

currently underway [201).
8.1.3. Data Link Hardware,

The required communication link for transferring the data from on-structure to off-

structure can be implemented with existing hardware. Communication hardware with
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transfer rates in excess of 10 megabit/second is presently available as well as special equip-
ment with higher transfer rates. This aspect of the identification problem should be im-
plementable with existing hardware and is of minor significance in the on-orbit parameter
estimation task. The requirement for data transfer should ease as more of the identifi-
cation hardware and software is placed on-structure. It may be necessary to transfer a
small amount of data to the off-structure facility for monitoring purposes but this should

be possible with narrow bandwidth channels.
8.1.4. Off-Structure Data Acquisition and Computer Requirements.

It is difficult to make a division between the on-structure and off- structure data
acquisition and computer facilities until the identification and control algorithms are se-
lected. Since the actuators and sensors are placed on the structure, this part of the data
acquisition need not be considered off-structure. The off-structure facility should have a
communication interface to the data link and these data should be transferred to the off-
structure computer. There is no limitation placed on the off-structure computer facility,
particularly if the off-structure site is the ground. The selection of the ground for the
off-stucture will be assumed in which case the computer can be sized according to the
computational load. Machines in the class of the CRAY-2, with throughput of 1 billion
flops, should have sufficient throughput to handle the most demanding identification task.
The off-structure computer can be sized downward to meet the demands of the overall
identification and control task as the computer load is shifted from off to on structure as

the algorithms mature.
8.2. On-Line Versus Off-Line Computation.

For the sake of clarity, the on-line computations will be considered as those calculations

done in real time. Similarly, off-line calculations will be those that do not have to be carried
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out in real time. Identification or estimation algorithms can be divided into two classes,

those of real time and those not requiring real time with perhaps a mix in some cases. The

adaptive estimation algorithm would require that all of the computations be in real time,
whereas the Ho or ERA algorithm can be done in either mode. If the on-orbit structure is
in a fixed orientation and orbit and is stable with respect to vibrations, there is no reason
to do the identification in real time. As an example of the mixed mode of calculations,
consider the case in which off-orbit substructure data is available to be utilized in the
identification algorithm. The substructure data would be collected off- orbit with some
secondary computations required to store the information in the most usable form. These

data would then be used in real time to supplement the on-orbit collected data.

It is difficult to address the on-line versus off-line computational requirements. The
only possible analysis that can be done is to consider all of the various mathematical
operations that are utilized in one operation of an algorithm, such as an FFT computation,
a matrix inverse, etc. Rather than consider each algorithm in its totality, perhaps it is more
logical to look at the some of the mathematical algorithms that are utilized in a parameter
estimation algorithm. In general, the number of computational operations that require the
major amount of time in computations are the multiply and divide operations. These two
operations require approximately equal time, thus there will be no distinction between the
two in counting mathematical operations. Add-subtract operations require very little time
and should not be included in the operations count. The table below tabulates some of
the mathematical operations used in some of the identification algorithms. The number of

operations is approximate with each given only as the order of counts.

The mathematical operations in Table 23 are as follows: A~! is a matrix inverse, SVD
is the singular value decomposition, A, L is the eigenproblem (right or left) , Al s the
generalized inverse, AB is a matrix multiply, Az is a matrix-vector multiply, and Az = b is

a linear equation solver. If it is assumed that N=4096 and n=200, the number of operations
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Table 23. Multiply-Divide Counts for Mathematical Operations.

Data Points Algorithm Operations
N FFT N log(N)
nXxXn A~} n3
nxn SVD n3
nxn A, L-General n3
nxn A, L-Symmetric n3
mxn, m>n at mn?
(n x n)(n x n) AB nd
(n xn)(n x1) Ax n?
(nxn)(nx1) Ax=b nd

is approximately 24000 for the FFT and approximately 8 x 10® for SVD. It is clear that
efficient algorithms of the N log(N) class need to be developed to reduce computation time

for processing large amounts of numerical data for identification algorithms.

Although it may be without mathematical rigor, some estimate of multiply- divide
operations should be made to determine an upper limit to the computational load. Suppose
that the structure has 100 vibrational modes that must be considered in the identification
task with 30 force actuators and 30 displacement sensors. It will also be assumed that
the spectral density of the structure is such that no vibrational mode in excess of 50
hertz needs to be considered. Using this upper frequency, a sampling frequency of 100
hertz is suggested by the Nyquist sampling theorem. This means that the sensors must
be sampled 100 times a second and with the 30 sensors, a total of 3000 data words must
be collected each second. The sampling rate does not place an undue restriction on the
samplers as analog- digital (A/D) convertors are available with apecifications far in excess
of these requirements. Since there are 100 modes to be considered, the Markov matrix in
the ERA algorithm should have a minimum of approximately 300 rows and 200 columns
if the least- squares algorithm or the SVD algorithm is to be used. Approximately 60000

data points will then be needed to populate the Markov matrix. The resulting matrix is
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300 by 200 and using (row)? by (col) as an estimate of the number of multiply-divide
operations for the least squares or SVD algorithm, the through.put for these operations
requires 18 Mflops. The least- squares or SVD algorithm is not the only operation required
for the parameter estimation, others are necessary. Using the 30 inputs and outputs, the
number of operations will probably be multiplied by at least 5, thus approximately 90
Mflops will be required for determining the solution. Even if this number is reduced by
one-half, present sequential digital machines, except for those with array processors or

those in the supercomputer class, cannot achieve this throughput. The above numbers are

in the “worst case” range.

If the above analysis is correct then the computations cannot be carried out in real-
time if a few seconds of data is to be processed all at once for the model identification
with standard designed sequential computers. The only hope for real time identification
is to use recursive algorithme where incoming data is processed on-line with an iterative
algorithma which computes a new update after each new set of data points. Even this
computational approach would probably require an array processor. An on- structure
distributed computer facility based on “state-of-art” array processors would require a con-
certed design effort but should be able to process the data in real time. Array processors
with throughput of 10-40 Mflops are available, thus 5-20 array processors would suffice
for on-line operation. Parameter estimation algorithms would have to be modified to run
on distributed array processors as little work has been done to implement the algorithms
for such a computer environment. The above number of array processors will probably be

reduced by a factor of 2 if an extrapolation is used to best guess what will be available in

3-5 years.

The number of data points collected each second to be utilized in the parameter
estimation algorithm could easily be transmitted to the off- structure computer facility

for off-line computations. The sampling frequency of =100 used in the above example
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requires that only 3000 (32 bits) words be transmitted to the off-structure facility. This
value is well within a data link bandwidth of 1 megabits/second transmission rate. The
data link with a 1 megabit bandwidth does not impose a severe limitation in implementing
any of the parameter estimation algorithms in an off-line procedure. There does not
seem to be a limitation on any aspect of an off- line (or off-structure) implementation if
a super computer is available for data processing. However, the off-line implementation
with a supercomputer is not recommended as this places a rather severe restriction to
later modification of the algorithm to on-structure computations. It is recommended that
an off-structure distributed computer facility be established so that at a later date the
machines can be placed on the structure. This would permit the on-orbit structures to
eventually have adaptive control strategies for multi-missiosn without dependence on off-
orbit computer facilities. Although the initial hardware cost may be higher, the total cost

will be lower for the family of future structures to be placed on-orbit.

The parameter estimation algorithm selected for the task of identification and control
of large space structures will not be finalized for several years. An intermediate period
during which tests of various algorithms will be conducted is the most probable scenario
and provisions for a broad coverage of computer needs should be established. It is also
recommended that a research and development program be established for a structure
identification facility at the same site of the distributed computer to develop computer
hardware for a broad range of structures. The program goal would be to produce hard-
ware and software packages for the purpose of adaptive identification and control of orbiting
structures and certification of the hardware for space applications. Hopefully, such a pro-
gram would produce hardware and software applicable to all structures on-orbit regardless

of their mission.
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SECTION 9. CONCLUSIONS AND RECOMMENDATIONS.

The ASCE Committee on Methods for Identification of Large Space Structures has
reviewed and evaluated the “state-of-the-practice” in system identification for application
to large space structures. A distinction is made between state-of-the-practice and state-of-
the-art because much of the published literature on structural system identification relates
to theoretical methods and numerical demonstration of the methods using analytically

X simulated “test data”; the theory has not been applied to real problems involving real

. hardware and real test data, and yet is considered by many to be state-of-the-art.

The report emphasizes identification as an integrated process involving the analytical
abstraction of a physical system for purposes of achieving specific modeling objectives. This

process involves conventional analytical modeling whenever possible, and the experimental

IE LA ool Ol as fad o v m e e e bl T I NG I TS L T e

verification of those models using parameter estimation. Nonparametric estimation for

«

input- output mapping may be employed in situations where analytical models are difficult

e
ta

to formulate. Thus the identification process is presented as a broad range of activities

possibly affecting the design of hardware itself.

One of the primary modeling objectives for large space structures is to produce reliable
structural models for use with control systems which will maneuver, damp, shape and point

these structures, or portions of them in accordance with mission objectives. Since the

ST T AN R ORI Sl Y,

models will be “flown” with the spacecraft, they will have to be flight certified to confirm
their predictive accuracy and reliability. The ability to certify these models will depend
strongly on the identification process, and the procedures used for model verification.
To the best of the cornmittee’s knowledge, no effort of this magnitude has ever been
undertaken. It is anticipated that new techniques for modeling, testing and estimation, as

well as new actuators and sensors for identification and control, new computer hardware
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and software, for ground testing as well as on-orbit testing, will ultimately be required to

meet the challenge of identifying large space structures.

The subsections which follow draw attention to a number of issues that need to be
resolved in developing a capability for identification of large space structures. Some of the
issues have already been discussed. Other issues or parts of issues have been identified in
the process of writing the report but have not been substantively addressed. Finally, an

attempt has been made to incorporate issues raised by the reviewers of this report.
9.1. Current Issues and Needs »elai‘ve to Large Space Structures.

During the past decade, the U.S. has developed a space transportation system capable
of sending people and materials into low earth orbit and bringing them back safely. The
Space Shuttle can support its crew in space for only a few weeks ~ too short a period to
really exploit many of the practical benefits of space operation. Consequently, the U.S. has
decided to take the next logical step, to build a space station capable not only of supporting

humans for extended periods of time, but also enabling them to work productively in this

new frontier.

From its user studies, NASA developed a set of requirements for the proposed space
station, {202]. It should be capable of servicing satellites, tending free-flying platforms, and
serving as a base for the construction of other large space structures. It should provide
facilities for research and development. The basic structure should be expandable to
accommodate additional laboratories and living quarters, solar arrays (up to 300 kilowatts

of power), and radiators to dispose of the waste heat.

Building the space station in a low gravity field presents NASA with major challenges.
Major space station components will be constructed on earth, but final assembly will occur

in space. Several shuttle flights will be necessary to carry the components into orbit. The
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station’s truss structures will probably be made of composites which have less weight
and lower coefficients of thermal expansion than metal. To assemble the space station in
space, two construction approaches are under consideration: “deployable” structures that
automatically erect themselves by simply unfolding, or “erectable” structures that would
be constructed by remote manipulator arms and (or) astronauts. In those areas where it is
a straightforward truss structure, a deployable design may be better used. In other cases
where complicated geometry or devices are attached, erectable designs will probably be

used.

To maintain a space station in an orbit subject to disturbances such as a tenuous but

measurable atmosphere, thermal gradients etc., some means of stabilization is required.

Conventional control moment gyros may be used to fine-tune the station’s attitude. Control
rockets may be required to periodically reboost the station when aerodynamic drag has
slowed it enough to lose attitude. In addition, other control devices may be needed to
passively or actively damp out the vibrational motion due to the structural flexibility of

the space station. However, most existing control and flltering schemes assume that a

RR 5 S AN s A

dynamic model is available for the system. A common approach is to develop a theoretical
dynamic model from physical laws and then perform experimental verification. On the
other hand, if an experimental identification of the structure is performed, an empirical

dynamic model can (theoretically) be obtained by measuring input and output signals.

Some of the most technically challenging large space systems have been proposed by
the Department of Defense. For example, Space Based Lasers (SBL) have been proposed in .
some SDI architecture to attack enemy ballistic missiles. These 10-50 meter structures are
small and stiff compared to the Space Station, but their need to maintain optical telescope .

tolerances while subjected to severe on-board vibration disturbances and rapid retargeting
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maneuvers has driven new requirements for actively controlled optical structures.
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The identification of a model for an on-orbit structure is a particularly complex prob-

lem which will require a rather large amount of data collection and computer operations

' to process the data [25]. The major problems associated with identifying a model of an
on-orbit structure are the choice of a mathematical model for the structure, selection of
a parameter estimation algorithm (recognizing it limitations), handling of noise and un-
certainties, and verification of the model from the parameter estimation. In addition to
these problems, it may be difficult to relate the prelaunch structure model data to the on-
orbit model and on-orbit data due to gravitational and other environmental effects. The
) on-orbit structure will have insufficient structural integrity to be assembled on earth for
testing. One key question arises: will it be possible to construct substructures for testing,
with these data used later for the on-orbit phase of identification?
The on-orbit structure will be exposed to a>harsh environment consisting of parti-
' cle radiation, solar effects, gravitational anomalies, extreme temperatures and of course, :,:
near vacuum. In addition to these effects, the structure may undergo physical parameter QSQ
changes due to preloaded stress and fatigue as well as the deterioration of composite ma- E
terials due to outgasing and other aging effects. Also entering the identification task and Eé
creating additional complexities is the accuracy of the computations, %
L
The following specific issues are presented to highlight system identification goals for ::C
large space structures, and indicate directions for pursuing those goals. é:.
5
. 9.1.1. Choice of Experimental Conditions. ;:

Before a space system is put in orbit, laboratory experiments are normally carried out

oV

LARAY AR B

to characterize the system. The design of an identification experiment involves a number
of choices such as the choice of actuators and actuator locations, input signals, choice of

response measurements, sensors and sensor locations, antialiasing filters, sample rates, etc.
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The experimental conditions affect the covariance matrix of the estimates. With a bad
choice of input, some parameters of interest may not be identifiable. The objective of
experiment design is to choose an input that enhances the estimates of the parameters of
interest. Theoretically, an impulse or white noise random excitation applied at appropriate
locations will excite all modes of the system. Significant participation of all important
modes is a necessary condition for identification. This is not always achieved in practice
because of bandwidth liinitations on the input and output devices. It is desirable to select
an input which maximizes the sensitivity of the system output to unknown parameters. To
date, the concept of optimal input has not been satisfactorily addressed in experimental
design for structural identification. In general, it is good practice to choose an input for
an identification experiment that is, as far as possible, similar to the inputs the system

will experience du”ing nperation.

Sampling can be taken over equally spaced intervals, logarithmically spaced intervals,
or by any other spacing schemes. The use of equally spaced samples is more widespread
than any other technique. For a linear system, the sampling rate should be at least twice
the highest frequency of interest. In practice, it is not wise to press the two-sample-
per-cycle rule too closely, particularly when the noise level is high or significant damping
is present in the system. To provide a margin of safety, the sampling rate should be
slightly greater than twice the highest significant frequency being sampled. For FFT
data processing, the sampling rate is limited by the data block size of the FFT processor
(typically a power of the integer 2 such as 512, 1024, 2048, etc.). The sampling rate, r,, is
determined by the data block size, N, the minimum frequency resolution bandwidth, f,
and the highest frequency of interest (i.e. Nyquist cutoff frequency), f.. The relationship
s r, = N(6f/f.) = N/(Tf.) where T is the duration of the record consisting of N

samples.
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9.1.2. Modeling Accuracy.

The prospect of certifying structural dynamic models to be “flown” with the control
systems of large space structures raises fundamental questions having to do with the intet-
face between etructural dynamics and controls technologies. Given that control systems
can be designed with robustness to accommodate some degree of modeling inaccuracy,
one might first question the cost-benefit tradeoffs between effort spent in accurate iden-
tification vs. effort spent in designing a robust control system. The question appears
simple on the surface, but quickly leads to more difficult questions, such as how modeling
accuracy, robustness and controller performance should be measured. All three involve

multi-dimensioned qualities, all of which are likely to be mission-dependent.

The reduced structural dynamic models used in control systems are particularly sus-
ceptible to modeling error because of the need to compress large volumes of structureal
information into the framework of a few generalized coordinates. These generalized co-
ordinates usually correspond to normal modes of the structure, selected on the basis of
frequency and participation in critical response variables. These response variables may be
associated with actuator and sensor locations, large structural (or nonstructural) masses,
or large structural motion. If shape control of an antenna (for example) is sought, then

those modes which determine the shape of the antenna must be included in the model.

The accuracy of a model therefore depends on how many modes are included in the
model and how accurately those modes can be identified. When light damping is present,

the latent roots of the lambda matrix

Ms?+ Ds + K = A(s) (378)

occur in complex conjugate pairs. The measurement sequence y(kT) will be obtained from

the measurement equation
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Y(kT) = Cz(kT) (379)

where z(kT) represents the actual motion of the structure measured at the sensor locations.
The measurement matrix C will in general contain differential and integral operators and

thus be frequency dependent when transformed to the frequency domain.

In addition to the errors due to structural idealization and modal truncation, inaccu-
racies will arise from measurement errors, as indicated above, and computational errors,
with the two types of errors difficult to separate. Even if the measurements are error
free, the word length of the computer used for data processing will introduce errors in the
parameter estimation. These errors will be particularly significant for short word lengths
and a model of high order. To illustrate, the method of the least- squares algorithm for

solving the overdetermined linear equation

Az =) (380)

by the equation

z=(ATA)"1ATb (381)

might be utilized in the identification process when observation errors and noise are present.
If (AT A) is ill-conditioned the above algorithm will produce a solution with much larger
errors than will the singular value decomposition algorithm applied to the same data. The
larger the number of modes to be identified, the more nearly singular the (AT A) matrix
will be. For a problem with the same data to be processed, the SVD algorithm will produce
a more accurate solution to equation (380) than will (381) in terms of the least square error,

An excellent comparison of these two algorithms is given in Noble and Daniel [203].
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9.1.3. Model Optimization and Uniqueness.

<

A (&}’

"

The concepts of model optimization and uniqueness were introduced in Section 2.1.

Uniqueness was described in terms of “identifiability”, the ability to “uniquely tie down

the parameters of a given model.” As explained there, one might intuitively expect a model

with more parameters to match observations of a system’s behavior better than a model

a

o

with fewer parameters. However, one might expect the model with more parameters to

7
-

Y
Fad 9w B |

experience “greater problems with nonuniqueness”.
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To illustrate the uniqueness problem, one may recall from Section 5.2.2 that the

A

Ho algorithm does not identify a unique triplet [A, B,C] for the transfer function of a

Ay
P

oA/

>,

multivariable system defined by

T &Sr
P 2 N

SR
> 4

T(s) = C|sI — A]"'B. (382)

o

TR

>

The transfer function will be unique but not the triplet. The same problem exists in

te = n@ SRR el | AN IEE NN

identifying the mass, damying and stiffnress matrices of the transfer function defined by

3

4

T(s) = C|Ms* + Ds + K|™'B. (383) ,.",-i

The transfer function might be found to be unique, but this does not imply that the mass, %
)

3 a . 3 » + ‘

damping and stiffness matrices can be uniquely determined. As an alternative to the ;'.:'4
question of uniqueness, another question that might be asked in the identification task is: &t:
what are the important parameters for the model and how are these parameters used in N
A

the control of a large space structure (204). Is it important in the control of the structure ::::
Ny

LAY

\ L}

.-

to identify all of the parameters of a model uniquely?

.o

This line of reasoning leads to the notion of a model which in some sense is “opti-

mum”. The qualities of an optimum model may be considered apart from the question of
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uniqueness, momentarily. The following questions suggest the qualities one might associate

with an optimum model:

“What is the optimal set of actuator/sensor locations, inj .t time- histories and system

(structural) characterizations required to meet control performance goals?”

“What is the optimal set of actuator/sensor locations, input time- histories and sys-
tem (structural) characterizations required for a particular structure so that errors
in system modeling (e.g. ignored nonlinearties) would have minimal effect on the

identified results?”
Imbedded in these questions are questions such as the following:

“Given a structural design, how does one find the set of response variables which,
when sensed, will best provide an adequate measure of how well the desired control

performance is met?” (related to “observability”)

“How does one establish the best set of actuator forces which will best enable strong
and complete influence on the chosen set of response variables?” (related to “control-
lability”)
All of these questions have to do with formulating a model for purposes of identification.
Inasmuch as uniqueness is related to identifiability, one might surmise from the foregoing
qualities of an optimum model that the ability to identify a model uniquely depends to
soine extent on the formulation of an optimum model. From a practical standpoint, one

might pose one final question as a corollary to the others :

“What degree of nonuniqueness in identification can be tolerated without affecting

controller performance?”

The questions are easier to ask than answer. Their importance, however, lies in the

directions they suggest for future research. The questions are really intended to stimulate
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further questions, rather than solicit specific answers at this time. The state-of-the-art

will advance as the questions are refined, expanded, and eventually answered.

As pointed out in Section 2.1, a priors knowledge will play a crucial role in structural
system identification. Since it is possible to ground test substructures and interconnected

substructures prior to assembling them on-orbit, knowledge can be gained by making mea-

surements in laboratories. Substructure testing programs can be used to help define an

optimal model for on-orbit identification. Although the laboratory environment will not
be the same as the on-orbit environment, there is no reason to believe that a model which
is optimal in the laboratory will not be suitable for on-orbit identification. The success of
on-orbit identification wili probably depend on substructure testing; a research and devel-
opment program with sufficient support should be established to carry out this work. There
are research efforts underway at several laboratories [205] but available computer programs
and structural modeling efforts are too limited to assure success in determining optimal
structure models in the near future. General purpose structural modeling and multi-body
dynamics computer programs such as NASTRAN and TREETOPS [206], respectively, can
be used to define and investigate complex models including large space structures. There
is no assurance, however, that optimum structural models can be generated with these

programs above.
9.1.4. System Uncertainties.

The identification of a system or structure from input-output data is further compli-
cated by uncertainties in system modeling. As discussed in Section 3.5, uncertainties are
due to system parameters which are not fully understood, such as nonlinearities, deadband
effects, hysteresis, model dimensions, elastic deformations, truncation errors, and a general
lack of full characterization of the structure's materials. In addition to system uncertain-

ties, forces may be acting on the system during the period of parameter identification
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which are not taken into account as input data, It is generally assumed that the system
is linear and time invariant, i.e. the system input/>utput behavior is the same from one
test period to another. If there are unaccounted outside forces acting on the structure,
or if the structural properties change due to the preloaded stress, the identified system
parameters will vary from one test period to another. It is impossible to predict how the
structure may change on- orbit without knowledge of the environment and its effect on
the structure. If the effect is amall, it may be treated as model uncertainty; if not, it will

have to be modeled.

Although th.ere may be some information on the changes of physical parameters of the
structural components due to the environment of space, there is insufficient test data on
composite materials in the extreme apace environment to fully characterize these materials.
The effects of solar radiation, electrons, gamma rays, and other forms of radiation for long
term exposure of the structure and the resulting change in the dynamic properties of the
structure are unknown. Of course, the cycling of temperature and vibration deformations
of the structure accumulate microscopic damage to the material and makes it difficult-to-
model time- variation of the material properties. These effects should be included in the

uncertainties until a better understanding of these effects is established.

The uncertainties in the structure's physical components and the forces acting on
the structure and its vibrational behavior can probably best be handled by some form of
adaptive estimation and control algorithm. As stated above, the adaptive strategy has been
applied only to systems with a limited number of modes or system parameters. References
to the application of the adaptive scheme to systems with 60-100 parameters have not been
found in the open literature. This does not necessarily mean that such applications do not
exist, it can only be concluded that the literature search did not uncover any references on

the subject matter. The paper by Nurre, et al [205] tends to support the above statement
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. as their paper does not provide definite procedures on how to include the uncertainties in

the identification process.

9.1.6. Damping Estimation.

The term damping as used defines the energy dissipation properties of a material

or system. In most cases, damping is broken down into two major headings identified as

' material damping and system damping |207). Material damping, sometimes called internal

damping, internal friction, or hysteresis damping, is related to energy dissipation in a
volume of macrocontinuous media. Viscoelastic damping is an idealized form of material
damping. System damping involves configurations of distinguishable parts or interaction
among various phenomena. Among the types of system damping are joints, interfaces,
and dashpots. Aerospace engineers have become interested ‘in measuring damping more
accurately because damping for flexible space structures is a major factor in designing
a controller to supress vibrational motion. A wide variety of experimental techniques
have been used to estimate damping. It is difficult to compare results found by different
inveatigators. When it is possible, the reported values often differ by substantial amounts,
e.g. by ratioe of five to one or more. Part of these differences can be attributed to material
and system uncertainties, invalid assumptions and inadequate identification methods. It
is believed that any test ought to bear a close resemblance to service conditions in order
to reduce uncertainties. Work done to date has not been completely effective in modeling
damping mechanisms. Looking to the future, the ability to successfully design and measure
structural damping will be important for both active and passive control. The damping

properties of specific materials and configurations under specific test conditions do, of

course, provide valuable data. However, to properly interpret and effectively use such data

in engineering applications requires more general theories and computational procedures.
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9.1.6. Approximate Linear Models for Nonlinear Systems.

All structures encountered in practice are nonlinear to some extent. The inherent
cemplexity of nonlinear vibrational systems makes a purely theoretical approach difficult
in deriving analytic models. Therefore, models based on (or improved by use of) measured
quantities are needed. Nonproportionality of restoring forces in response to certain input
forces is a very common phenomenon in struch:xres. For example, joint-dominated struc-
tures may exhibit nonlinear behavior depending upon forcing conditions. Identification of
specific nonlinear structures using estimation methods has been studied. The choice among
various approaches for nonlinear system identification is dictated by the process and pur-
poee of identification. Unfortunately, most algorithms are very difficult to implement, or
apply only to a narrow class of systems. Since identification methods for linear systems
are well established and have been widely applied, the question arises as to whether a
nonlinear system can be represented by a linear model which approximates the dynamic
behavior of the system. For moderate system nonlinearities, an approximate model may be
adequate for response prediction. In fact, many nonlinear functions can be approximated
in terms of a series expansion of a finite number of sine and cosine functions (as in the use
of describing functions, for example). A system response representation in terms of a sine
and cosine series is equivalent to a linear model in modal space which is characterized by
the frequencies and coefficients of the series. Further research in this direction should be

performed.
9.1.7. Decision to Perform an Identification in Orbit.

With detailed analysis and ground testing, the dynamic characteristics of a space sys-
tem may be estimated. However, once the system is in orbit, its characteristics may be
quite different because of the environment, construction anomalies, or other unforeseen

factors. To overcome this problem there should be predetermined times during the course
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of the mission for calibration and parameter updates. Although there are potentially a
great number of parameters to be identified, there is certainly no need for continuous iden-
tification of all parameters. Questions arise as to how often and how many parameters
“require updating. The decision for making parameter updates should depend on some sig-
nificant inference made from observed data. Any catalogued parameter of mission interest
will probably have associated with it both a nominal value and some acceptable tolerance
around the nominal. If the parameter is observable through the measurement data, then it
is indeed a good candidate for a detection scheme to statistically test whether its value has
remained in the neighborhood of the nominal. With this background, there exist various
criteria for designing detectors to decide when and how many parameters require updates.
Criteria such as the Neyman-Pearson optimal detector which maximizes the probability
of detection for a given false alarm rate, or the Bayes optimal detector which minimizes

expected operating costs, may be tailored for specific application.
9.2. RECOMMENDATIONS.

It is evident that the state-of-the-practice in system identification is far from being

.adequate to meet the enormous challenges posed by the deployment or erection of large

space structures. This report is concluded by making the following recommendations:

1. Ezperimental Design: New, innovative ezperimental techniques and snput schemes
must be evolved that will permit ezxcitation of a large number of globul and no local
modes of the structure, its components or sta scaled model during ground vibration

teating or uibration testing in space.

2. Type of Identification: We anticipate extremely large flezible space structures being
placed into orbst within the next 20 to 30 years. Parametric methods involving the es-

timation of thousands of parameters (model or modal) are out of the question; methods
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of parameterization which lead to the definition of a relatively few distributed parame-

| ters should be sought instead. Modal parameterization methods may be especially viable

Jor LSS because reasonable estimates of highly sparse modal mass, stiffness and damp-

“ing matrices of the structure can be obtained through an appropriate updating scheme

applied to modal matrices which are initially diagonal. Research along this direction
may yield fruitful results. Research should also be directed toward the development of
highly efficient non-parametric methods that recover an input-output map of critical

structural loadpaths.

. Benchmark on Estimation Algorithms: It is recommended that a comparative study of

estimation algorithms be undertaken with a view to evolving some highly efficient and
practical algorithms most appropriate for identification of LSS. The research commu-
nity should also be seeking algorithms that are essentsally linear, that is to say those
that operate on the input-output data in a linear way much like the FFT procedure. We
should be looking for algorithms that are more appropriate for parallel computation,
those that do not require operations on large matrices, those that can handle rank de-
ficient matrices through Singular Value Decomposition and those that are direct rather

than iterative with no guarantee of convergence.

. Practical Considerations: It is difficult to assess the adequacy of the state of the art

untsl it has been reduced to practice. One of the biggest deficiencies and most urgent
needs is the practical simplementation of eziatihg theory. Some of the practical problems

are:
» Diagnosing the cause(s) of unsuccessful parameter estimation. Possible causes

snclude:

- Ezperimental errors

.
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R Modeling errors, including the improper assessment of initial parameter uncer-
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- Inappropriate definition of parameters

- Insufficient data

- Inappropriate selection of data

- Inappropriate sequencing of data when sequentsal processing 1s used. h
o Determsning what parts of a model can relsably be identified from ground vibra-
tion tests and what parts must be identified or confirmed by testing sn apace.

o Determsning how to verify a reduced-order plant model in space, including the
sclection of parameters to be identified, the selection of snputs and the selection

EY IV 3

of measurement quantities.

5. On-Orbst, Off-Orbit Computations: Hardware and software aspects of sdentification to

handle large amounts of data collected on board must be addressed and resolved.

6. Statistical Estimation: Statistical methods for both parametric and nonparametric es-

timation are recommended over nonstatistical methods because they provide a means I

of evaluating the reliability of the estimates. Statistical estimation ts considered to
be necessary although not always sufficient for this purpose. Ezperimental errors and
modeling errors can invalidate statistical measures of reliability; however even snvalid
measures of statistical reliability often provide a correct indication that an estimate 15

in error.

7. Uncertainties: A great deal of research is necded to provide a belter characterization
of modeling uncertainty, sncluding the identification and removal of systematic errors.

Systematic errvors include joint nonlinearsty and other types of nonlinearsties, material

255




- I - o o I e
2
demping, etc. The remaining model uncertainty can be treated as random but should be
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